CI-2009 EAp2: Minimum Energy Performance

  • CI_EAp2_Type1_EnergyOptimization Diagram
  • Not always standard practice

    This prerequisite can be a major hurdle for LEED-CI projects. When challenges arise, it’s most often because project teams don’t review the requirements early enough in the process to incorporate them into the design. Some teams assume that these requirements follow standard practice—but in some cases they do not. 

    Prescriptive and performance measures

    The prerequisite demands that teams comply with a number of prescriptive measures, along with requirements for lighting power density reductions and meeting performance thresholds for equipment efficiency based on the ASHRAE 90.1-2007 standard. 

    Only applies to the interior fit-out

    The LEED-CI project scope includes only the systems being installed within the scope and budget of the interior fit-out of the project. Base buildingThe base building includes elements such as the structure, envelope, and building-level mechanical systems, such as central HVAC, etc. systems that are not part of the leasable area occupied by the interior space are not addressed here. 

    This credit usually falls under the responsibility of the mechanical engineer, but the lighting designer, architect, and owner all must contribute to designing an energy-efficient project that meets the owner’s goals as well as the LEED requirements.

    The applicable standard

    This prerequisite refers to ASHRAE 90.1-2007, Sections 5–10, for mandatory provisions and energy-efficiency requirements via a prescriptive or performance-based approach for the project’s envelope, HVAC, service water heating, power, lighting, and other equipment as defined by ASHRAE. In addition, it mandates installation of Energy Star-labeled equipment and appliances.

    Projects in California may use Title 24-2005, Part 6 in place of ASHRAE 90.1-2007.

    The energy-use breakdown

    This credit addresses four components of energy use in reference to ASHRAE 90.1–2007.

    1. Mandatory provisions for energy systems in sections 5–10 of ASHRAE 90.1–2007 
    2. Minimum energy-efficiency specifications for the envelope, HVAC, and hot water, measured by compliance with prescriptive or performance requirements of ASHRAE 90.1-2007
    3. Lighting power density reduced by 10% from ASHRAE 90.1-2007
    4. For new purchases, at least 50% Energy Star-labeled appliances and plug-load equipment, as measured by installed rated powerRated power is the nameplate power on a piece of equipment. It represents the capacity of the unit and is the maximum that it will draw. (in watts).

    All ASHRAE requirements can be documented using ASHRAE compliance forms. 

Legend

  • Best Practices
  • Gotcha
  • Action Steps
  • Cost Tip

Pre-Design

Expand All

  • General approach


  • This prerequisite establishes the project’s energy performance so that the project can demonstrate a commitment to energy efficiency. The energy use of a LEED-CI project, in terms of the ASHRAE 90.1–2007 standard, must meet four distinct requirements: 

    • ASHRAE 90.1-2007 – Mandatory Requirements 
    • ASHRAE 90.1-2007 – Prescriptive Option or Performance Option 
    • Lighting Power Density Reduction of 10% 
    • Energy Star-labeled Equipment and Appliances - 50%

  • Identify the elements of the project that fall under this prerequisite: space cooling, space heating, lighting, ventilation, pumping, and domestic hot water. Do this by reviewing the requirements in ASHRAE 90.1-2007 and developing a building systems narrative for equipment and lighting.


  • LEED-CI energy systems relate to only those building systems within the construction or remodeling scope of the project. They do not address base building systems outside the interior fit-out. Applicable systems typically include lighting, HVAC distribution, service water heating, and equipment and appliances. The envelope is usually completed as part of the base building. It is only when the envelope is altered in the tenant scope that a CI project must address the requirements listed in the prerequisite. 


  • The owner and project team should determine the project’s energy efficiency goals and include them as part of the owner’s project requirements (OPR) and Basis of Design. 


  • Having the owner take an active role in developing and maintaining energy efficiency goals for the project can be helpful to the project team. Stating goals in terms of a “minimum acceptable level” and a “specified payback period” is an effective way to articulate goals. For example: “Our goal is a minimum 30% reduction in lighting and HVAC energy usage” or “to implement efficiency measures with paybacks of less than 5 years.” 


  • Consider integrating high-efficiency HVAC equipment into your design.


  • Efficient design can have synergistic benefits. For example, low lighting power density (LPD) translates to a smaller cooling load, which results in a smaller cooling system size and lower energy bills for lighting and cooling, which are the largest demands in most office buildings. 


  • Many local incentive programs offer rebates for efficiency measures. Identify any available incentives at this time to inform your design decisions for equipment selection. Also look for incentives for energy optimization during the design process, like utility-funded energy modeling programs. (See Resources for help finding incentives.)


  • ASHRAE 90.1–2007 - Mandatory Requirements


  • The prerequisite includes meeting the mandatory requirements for each of the six sections of ASHRAE 90.1-2007.


  • These six sections include all major energy-using components of a building project:

    • Section 5: Envelope – Walls, roof, floor insulation and window thermal performance including fenestration sealing and window performance. 
    • Section 6: HVAC – Minimum-rated efficiency for zones, pipe insulation, and minimum equipment efficiency.
    • Section 7: Service Water Heating – Tank insulation and minimum boiler efficiency in regard to both domestic and commercial usage.
    • Section 8: Power – Relates to additional power-using equipment.
    • Section 9: Lighting controls, wiring, sensors – Examples are automatic light shutoff controls, wiring, exterior lighting.
    • Section 10: Other equipment – Electrical motors. 

  • The MEP team should become familiar with the minimum efficiencies required for heating, cooling, and hot water equipment listed in ASHRAE 90.1-2007, Tables 6.8.1 and 7.8.


  • If you are installing doors and windows, have the architect check required leakage rates and thermal characteristics of assemblies in Section 5.4. 


  • Lighting control requirements can present a problem if they are not properly understood early in the design stage. Have your lighting designer become familiar with section 9.4, which spells out the requirements for lighting controls and automation systems.


  • Mandatory provisions of ASHRAE 90.1-2007, Sections 5–10, can be stricter than local codes and should be understood at the beginning of the design phase.


  • Non-compliance with any of the requirements disqualifies the project from LEED certification. All projects, including remodeling projects, must meet the requirements for all components and systems within the scope of the fit-out. Exemptions include buildings designated “historically significant” by a recognized authority (such as the U.S. Dept. of the Interior), 24-hour facilities, equipment and portions of building systems that use energy primarily to provide for industrial, manufacturing, or commercial processes.


  • The mandatory provisions (Section x.4) are separate from and in addition to the prescriptive requirements (Sections x.6) of ASHRAE 90.1. The two are commonly but incorrectly used interchangeably. None of the mandatory provisions can be compromised; prescriptive requirements, however, provide a way to meet the minimum efficiency requirements of this prerequisite and offer multiple options for doing so. 


  • ASHRAE 90.1-2007 – Prescriptive Option or Performance Option 


  • In addition to meeting the mandatory requirements, the project must demonstrate that the energy use of the project is equivalent to ASHRAE 90.1-2007. This can be demonstrated by complying with the prescriptive checklist or simulating whole-building energy use with an energy model, also known as the performance option.

    • Option 1) Prescriptive: The four components of energy use (below) must meet every requirement on the predefined checklist.  
    • Option 2) Performance: Create an energy model for the space to determine the percentage savings on the total design as compared to a minimally code-compliant space.
    • Refer to credit EAc1.3: Optimize Energy Performance—HVAC, for a more detailed description of the performance option and credit achievement.

  • The four components of energy use under this prerequisite—envelope, lighting, HVAC and hot water—include only those components that are within the scope of CI work. So, if the hot water boiler is owned by the base building, and the tenant is installing a pipe and pumps to deliver hot water to the bathrooms, the prerequisite covers only the delivery method. So the pipe and the pumps must meet ASHRAE requirements for minimum pipe insulation and pump efficiency—the efficiency of the hot water boiler need not be accounted for. 


  • Developing a simulation model is an added expense and you may need it to provide a demonstrable payback if you’re going to use it as part of your compliance path. It can be well worth the cost, however, especially on larger projects with greater scope. If the scope of the project is larger (>100,000 ft2) and includes a central plant in addition to HVAC distribution and lighting, it can make sense to develop an energy model to assist in system selection and lighting design.


  • Most CI projects find it cost-effective to pursue the prescriptive option because of a limited design scope in HVAC systems and the building envelope, making the energy model of limited use as a design tool. 


  • Selecting a performance-based approach using an energy model solely for LEED compliance is not recommended. Equal opportunities are available with either the prescriptive or performance approaches for LEED compliance. 


  • Lighting Power Density Reduction of 10% 


  • Refer to the ASHRAE 90.1-2007 standard for lighting power density allowances. The prerequisite requires your project’s lighting power density (in watts/ft2) to be 10% lower than the standard. ASHRAE lists allowable LPDs in the reference standard of Section 9.5.1 for building types, and in Section 9.6.1 for individual space uses.


  • Lighting power density is defined as the amount of total lighting power in watts used for a given floor area in ft2 (watts/ft2).


  • The calculation addresses total lighting power use, although it can be determined in two different ways: the building area method or the space-by-space method. Review the ASHRAE LPD allowances and space-type definitions. Consider which approach is most appropriate for your project to demonstrate compliance. 


  • Refer to EAc1.1: Optimize Energy Performance—Lighting Power for a more detailed description of these methods and credit achievement.


  • The building area method is simple and it is an easy one for projects that include only a few space types and can be easily classified as one of the building types listed in ASHRAE, Table 9.5.1. The table refers to a single lighting power allowance for each building type. To determine your project’s performance, compare the total allowable LPD for the building type to the installed LPD of your project. 


  • The building area method allows trade-offs to accommodate for increased LPD in specialized spaces. This is done by intentionally reducing LPD in other areas to meet the whole building LPD allowance. The LPD of those specialized spaces may exceed the allowed LPD as long as the whole building LPD is in compliance. 


  • The space-by-space method is a good option for projects that do not fit into one of the building type categories or that require increased LPD allowances for either decorative or merchandise lighting. These types of spaces are allowed higher LPDs, but these increases can only be counted to the extent that they are actually used. ASHRAE allowances are listed in Table 9.6.1 for each space type. 


  • The ASHRAE standard refers to “installed” LPD, so all the light fixtures installed during design and construction must be included in the calculation. Often, designs will provide two fixtures to supplement each other at different times. For example, task lights may be designed to be used only intermittently, but for LPD calculation purposes, you should assume that all lights are switched on. 


  • In a remodeling project, if new lighting is replacing less than 50% of the total installed wattage, the project is exempt from reducing LPD 10% from the ASHRAE 90.1-2007 standard. However, you still must comply with all mandatory requirements for controls and wiring.


  • Research the exemptions in ASHRAE 90.1-2007, Section 9.2.2.3. Many types of performance and high-powered performance lighting (such theatrical lights) are exempt from the calculations. Refer to the additional lighting allowances for artwork, decorative lighting, and display lighting listed in Section 9.6.2. 


  • LEED only refers to ASHRAE 90.1-2007, Sections 9.4 and 9.5. Other sections are not applicable to LEED certification requirements. 


  • Provide independent controls for all task lights. (This can also contribute to earning EAc1.2: Optimize Energy Performance—Lighting Controls and IEQc6.1: Controllability of Systems—Lighting.  


  • Energy Star-labeled Equipment and Appliances – 50%


  • Based on new purchases that are planned, develop a list of appliances and equipment that must meet the Energy Star requirement for your project. If it is Energy Star-labeled, then it must be included in the list. At a minimum, this should include office equipment such as computers, fax machines, printers, scanners, and monitors, as well as appliances such as refrigerators, dishwashers, clothes washers and dryers.


  • Check the Energy Star website for an up-to-date listing of Energy Star-labeled products and appliances. 


  • HVAC, lighting, and building envelope products are not included for this purpose, because they are addressed in other parts of EAp2 and EAc1. 


  • Refer to credit EAc1.4: Optimize Energy Performance—Equipment and Appliances, for a more detailed description of these methods and credit achievement.


  • This prerequisite requirement is typically easy to meet. Most office computers and equipment are Energy Star-labeled and usually at little or no cost premium. Carrying out the calculations early on will tell you if the owner should specify more Energy Star-labeled equipment for the new spaces. 

Schematic Design

Expand All

  • Explore opportunities to reduce energy demand by identifying all large, energy-using systems in the project. In a typical office, lighting can contribute 30%–50% of a space’s total energy use, with HVAC at 20%–30%, and the rest for equipment and power loads. If your project’s scope allows envelope modification, explore window size and performance, shading systems, and daylight optimization. 


  • If the owner has identified a percentage reduction in energy-use goals—over code or per square foot—the design team should identify measures to achieve them by optimizing mechanical and lighting design, plug-load equipment, and any other energy-using systems. 


  • ASHRAE 90.1-2007 – Mandatory Requirements  


  • Review ASHRAE equipment requirements before system selection as applicable to your project. These are critical and often-overlooked decisions. 


  • Seek synergy in design disciplines. For example, the layout of interior partitions can have an impact on meeting the mandatory provisions for lighting controls. 


  • ASHRAE 90.1-2007 – Prescriptive Option or Performance Option


  • Decide on your compliance path—Option 1: prescriptive or Option 2: performance—early in the schematic design phase. 


  • Prescriptive Option 


  • Have your mechanical engineer become familiar with all the requirements of the prescriptive sections of ASHRAE 90.1, especially section 6.5. Because this is a prerequisite, noncompliance with any of the provisions disqualifies the project from LEED certification.


  • Complying with the prescriptive method may require some additional time on the part of the design team to review and update compliance with each requirement. The mechanical engineer, architect, and lighting designer need to walk through the checklist to track the status of each requirement. 


  • Use the ASHRAE compliance forms to update the status of your prerequisite compliance. Typical prescriptive requirements may include a certain heat-pump efficiency rating and the installation of economizers. Building owners may perceive these to be high-cost items, so keep the owner involved in your prescriptive requirement review.


  • Performance Option 


  • Contract the modeler by the schematic design phase. Have them provide a high-level review of energy-efficiency opportunities, including HVAC system alternatives, lighting power density targets, and proposed envelope assemblies, if applicable.


  • Lighting Power Density Reduction of 10% 


  • Develop the lighting layout and identify fixtures so that the design LPD target will be 10% lower than the ASHRAE standard. Use calculation tools and ASHRAE compliance forms to run preliminary lighting power density calculations. 


  • Lighting loads can be reduced through the use of indirect lighting design, lower ambient light levels with increased task lighting, and efficient fixtures such as LEDs, T5 fluorescent lighting, and compact fluorescent lighting.  


  • Use halogen and incandescent lamps with high power density sparingly or not at all, as they can prevent you from meeting the prerequisite.


  • With early design direction and energy-efficient fixture selection, lighting power density can easily be reduced by 10% with little or no additional cost. 


  • Energy Star-labeled Equipment and Appliances – 50%


  • Add the rated power for each piece of new equipment to the list of appliances and equipment that you began during the predesign phase. When the rated power is not easily available from product data sheets, refer to the Energy Star website. 


  • “Rated power” refers to the maximum amount of power that can be drawn by a piece of equipment at any given time. Be sure to use this for each appliance and piece of equipment to be consistent in your documentation.


  • From your list of appliances and equipment, create a table that includes power rating for each entry, and whether each is Energy Star-labeled. Add the power usage for each piece of equipment on your list, including Energy Star-labeled equipment. The percentage of total power usage from Energy Star-labeled equipment should be at least 50%.  

Design Development

Expand All

  • Confirm that the established energy-efficiency measures are incorporated into your design. Identify any questions left open or strategies not included and analyze the potential long-term energy savings before ruling out a strategy that the team or owner is considering eliminating because of its perceived high cost. 


  • Using an integrated design process, the team can easily reduce energy usage below ASHRAE 90.1-2007 thresholds. When designing the lighting layout, the team can take into account the daylighting design of the space in order to reduce the number of fixtures and lower the wattage. The architect can finish the interior space to further enhance lighting efficacy and reduce dependence on mechanical cooling and heating. If appropriate, the mechanical designer should evaluate underfloor air distribution or radiant heat instead of ducted air for higher efficiency. 


  • The mechanical system design often includes the distribution of air and a refrigerated or heated medium. Pumps and fans are large components of energy usage. Use variable-frequency drive pumps and a variable-air-volume distribution system to address fluctuating demand. Install sensors and controls to maintain air volumes and reduce energy waste during low-occupancy periods.


  • The mechanical team should meet with the base building’s engineer or manager early in the process to get detailed information on the potential to add controls, outside air intakes, and to make efficiency modifications to base building systems. 


  • ASHRAE 90.1-2007 – Mandatory Requirements 


  • Continue to verify that the mandatory and minimum requirements of ASHRAE 90.1–2007, Sections 5–10, are being met throughout changes in the design development phase.  


  • ASHRAE 90.1-2007 – Prescriptive Option or Performance Option


  • Constant communication among project team members throughout the design process is important for minimizing construction and operational costs and meeting the project’s goals. For example, changing a specification, such as the solar heat gain coefficient of glazing, affects mechanical system sizing. These opportunities should be discussed with the team and incorporated into the design.


  • Prescriptive Option


  • Continue to verify that the prescriptive requirements of ASHRAE 90.1-2007, Sections 5–10, are being met throughout changes in the design development phase.  


  • All ASHRAE compliance forms should be completed during the design phase to track status and compliance whenever changes are made. 


  • The compliance forms are not required by LEED Online, but it is a good practice to complete them during design development to use as a checklist for the project team and keep them until the project receives LEED certification. 


  • Performance Option 


  • The energy modeler should begin the modeling now, and continue to update it whenever design changes are made to ensure that the project maintains the prerequisite requirements. 


  • Work on an energy model typically takes three to four weeks before it can provide reasonable results and recommendations, so be sure to start this early in design development. 


  • The model is a great design tool that should be utilized to its full potential during design development. Use it to assist in design development for interior mechanical fit-out spaces, comparison of alternative systems, determination of lighting loads, and selection of fixtures. Simulate alternative strategies or designs to provide a true cost-benefit analysis of energy-saving features, along with long-term energy savings and lower maintenance costs for the tenant and building owner. 


  • The energy model can also demonstrate potential savings on the whole building level. While the base building may have existing energy constraints, take the opportunity to encourage future upgrades such as a new central plant, more controls in the base system, end-user ability to set temperatures and reduce energy use, a more efficient air-distribution system—improvements that will benefit the whole building.


  • The documentation for the performance approach is the same as for EAc1.3: Optimize Energy Performance—HVAC, Option 2 – Energy Cost Reduction, 15-30%. 


  • Lighting Power Density Reduction of 10% 


  • The prerequisite is dependent on the baseline allowance of lighting watts/ft2. Run preliminary calculations, using the building area method or space-by-space method, and determine which option provides the greater allowance for your project. 


  • If your project develops an energy model, you can use it not only to optimize the lighting design but also to demonstrate that lighting power density is 10% less than the ASHRAE baseline case, per Appendix G.


  • Check Section 9.6.2 for potential additional allowances for decorative or display lighting. This additional power density is a function of the type of merchandise and the space area. 


  • Although daylight and occupancy sensors help to keep energy costs low, they cannot be used in calculations for lighting power density. However, if your project develops an energy model to demonstrate HVAC and lighting compliance, occupancy and daylight sensors can be used to reduce design-case energy use, per ASHRAE 90.1-2007, Appendix G, Table G3.1, Section 6. 


  • Energy Star-labeled Equipment and Appliances – 50%


  • Using the table of appliances and equipment that you developed previously, confirm the rated power of products listed and compliance with the requirement that 50% of the total rated power be Energy Star-labeled. 


  • The calculations are based on the rated power of each appliance or piece of equipment.  So a single large power-using appliance, like a refrigerator, may have a higher rated power than dozens of computer monitors. Investigate if those large appliances are Energy Star-labeled, especially if they are to be purchased new for the project, to increase the project’s percentage of rated power that is Energy Star-labeled. 

Construction Documents

Expand All

  • Identify unique or unfamiliar energy-efficiency strategies in the construction documents and confirm expectations and requirements for installation. Outline standards and requirements in bid packages so that they are clear to the general contractor and subcontractors.


  • Apply for rebates and incentives based on actual system selection. 


  • ASHRAE 90.1–2007 – Mandatory Requirements 


  • Revisit all prerequisite requirements to confirm compliance after any value engineering has been completed.


  • ASHRAE 90.1-2007 – Prescriptive Option or Performance Option


  • As the prerequisite energy target goes beyond code compliance, some members of the construction team may not be familiar with the additional requirements. Integrate equipment selections in drawings and bid documents.


  • Refer to the ASHRAE compliance form to check if measures such as controls, sensors, wiring, equipment efficiency, window specifications, and pipe insulation are included in drawings and bid packages.


  • Discuss efficiency upgrades with the bidding teams to clarify any questions about new systems. 


  • Lighting Power Density Reduction of 10% 


  • Ensure that the specified lighting system and controls are installed. 


  • Do not replace high-efficiency lighting to reduce costs. 


  • Energy Star-labeled Equipment and Appliances – 50%


  • Update the table of appliances and equipment after the construction documents are complete to track any reduction or increase in the amount of Energy Star-labeled equipment and appliances. If the Energy Star-labeled systems do not make up 50% of the total rated power, revisit the list to identify which appliances and equipment can be upgraded to meet the threshold. 

Construction

Expand All

  • ASHRAE 90.1-2007 – Mandatory Requirements 


  • Install the systems as specified. Have the mechanical engineer and the commissioning agent visit the site to ensure that the correct systems are being installed. 


  • Confirm that the system components and system efficiency are the same as that specified. 


  • Develop the compliance documentation. Compliance can be demonstrated with ASHRAE 90.1-2007 compliance forms, or the LEED Online form may be signed by the registered architect and design engineer. 


  • ASHRAE 90.1-2007 – Prescriptive & Performance Options 


  • Demonstrate compliance using the ASHRAE forms or a sign-off by the registered architect and engineer. 


  • Lighting Power Density Reduction of 10% 


  • Demonstrate LPD compliance using ASHRAE compliance forms— or if your project developed an energy model, use the outputs from the model to fill in the forms. Compliance forms are available on the ASHRAE website for free download.


  • ComCheck may be used to demonstrate compliance with LPD requirements.  


  • Energy Star-labeled Equipment and Appliances – 50%


  • Complete the table of equipment and appliances in LEED Online and verify that 50% of the rated power is Energy Star-labeled.

Operations & Maintenance

Expand All

  • Have the MEP engineer and controls contractor develop an operations manual in collaboration with facility management and the commissioning agent to aid in maintaining and correctly operating all energy-efficient equipment.


  • Energy-efficient design strategies may be new to the users and operating staff. It is helpful to develop training and an O&M manual. Occupants and facility staff should be aware of any automatic controls and refrain from changing settings and controls during the initial months of occupancy. 


  • Energy-efficiency measures often offset their own cost by providing large savings on operational energy bills. These prerequisite requirements are directly tied to the benefit of efficient, low-cost operations.


  • The lease or sale agreement may include a fixed utility rate such that energy-efficiency measures do not provide a direct payback to the client. In these cases, the tenant or buyer may want to renegotiate the lease with the landlord so that utilities are not included in the agreement and are paid directly by the tenant.

  • USGBC

    Excerpted from LEED 2009 for Commercial Interiors

    EA Prerequisite 2: Minimum energy performance

    Required

    Intent

    To establish the minimum level of energy efficiency for the tenant spaceTenant space is the area within the LEED project boundary. For more information on what can and must be in the LEED project boundary see the Minimum Program Requirements (MPRs) and LEED 2009 MPR Supplemental Guidance. Note: tenant space is the same as project space. systems to reduce environmental and economic impacts associated with excessive energy use.

    Requirements

    Projects that registered on or after April 8, 2016 are subject to the four point mandatory minimum, four points must also be earned in any of the four sub-sections of EA credit 1, Optimize Energy Performance.

    Design portions of the building as covered by the tenant’s scope of work to comply with ANSI/ASHRAE/IESNA Standard 90.1–2007 (with errata but without addenda1) and complete the following:

    • Compliance with the mandatory provisions (Sections 5.4, 6.4, 7.4, 8.4, 9.4, and 10.4) of ANSI/ASHRAE/IESNA Standard 90.1–2007 (with errata but without addenda1). Projects outside the U.S. may use a USGBC approved equivalent standard2.
    • Achieve the prescriptive requirements (Sections 5.5 or 5.6, 6.5, 7.5 and 9.5 or 9.6) or performance requirements (Section 11) of ANSI/ASHRAE/IESNA Standard 90.1–2007 (with errata but without addenda1) or USGBC approved equivalent.
    • Reduce connected lighting power density 10% below that allowed by ANSI/ASHRAE/IESNA Standard 90.1–2007 (with errata but without addenda1) or USGBC approved equivalent using either the Space-by-Space Method or by applying the whole building lighting power allowance to the entire tenant spaceTenant space is the area within the LEED project boundary. For more information on what can and must be in the LEED project boundary see the Minimum Program Requirements (MPRs) and LEED 2009 MPR Supplemental Guidance. Note: tenant space is the same as project space..
    • Install ENERGY STAR®–qualified equipment for 50% (by rated powerRated power is the nameplate power on a piece of equipment. It represents the capacity of the unit and is the maximum that it will draw.) of ENERGY STAR–eligible equipment installed as part of the tenant’s scope of work. This requirement includes appliances, office equipment, electronics, and commercial food service equipment. Equipment that meets the same requirements as ENERGY STAR qualified products but does not bear the ENERGY STAR label is acceptable. Projects outside the U.S. may use a local equivalent to ENERGY STAR. Excluded are heating, ventilating, and air-conditioning (HVAC), lighting, and building envelope products.

    Projects in California may use Title 24–2005, Part 6, in place of ANSI/ASHRAE/IESNA Standard 90.1–2007.

    Potential Technologies & Strategies

    Design the systems impacted in the tenant’s scope of work to maximize energy performance. Use a computer simulation model to assess the energy performance and identify the most cost-effective energy measures. Quantify energy performance compared with a baseline building.

    If local code has demonstrated quantitative and textual equivalence following, at a minimum, the U.S. Department of Energy (DOE) standard process for commercial energy code determination, then the local code may be used to satisfy this prerequisite in lieu of ANSI/ASHRAE/IESNA Standard 90.1-2007. Details on the DOE process for commercial energy code determination can be found at http://www.energycodes.gov/implement/determinations.

    FOOTNOTES

    1. Project teams wishing to use ASHRAE approved addenda for the purposes of this credit may do so at their discretion. Addenda must be applied
    consistently across all LEED credits.

Organizations

Database of State Incentives for Renewables and Efficiency (DSIRE)

This database shows state-by-state incentives for energy efficiency, renewable energy, and other green building measures. Included in this database are incentives on demand control ventilation, ERVs, and HRVs.


Architecture 2030

Non-profit organization aiming at design community to increase collaboration for designing energy efficient buildings.


IBPSA

International association of energy modelers with various national and local chapters. 


Low Impact Hydropower Institute

The Low Impact Hydropower Institute is a non-profit organization and certification body that establishes criteria against which to judge the environmental impacts of hydropower projects in the United States.

Web Tools

National Resources Defense Council

Explore this website to find out how building green can boost your bottom line. Get tips for streamlining design and construction. Learn which strategies deliver the biggest paybacks.


Advanced Energy Design Guides

Free download of AHSRAE energy savings guide, use for Option 2.


Lawrence Berkeley Lab: Building Technologies Department

Research warehouse for strategies and case studies of energy efficiency in buildings.


Advanced Buildings Technologies and Practices, Core Performance Guide

A prescriptive program to achieve signifi cant, predictable energy savings in new commercial buildings.


Whole Building Design Guide (WBDG)

This website lays out design process for developing an energy efficient building.


Efficient Windows Collaborative

An online window selection tool with performance characteristics.


Advanced Buildings Technologies and Practices

This online resource, supported by Natural Resources Canada, presents energy-efficient technologies, strategies for commercial buildings, and pertinent case studies.


AIA Sustainability 2030 Toolkit

This website discusses ways to improve design for lower energy demand as they relate to the AIA 2030 challenge.


Windows for High-Performance Commercial Buildings

This website includes discussion of design issues, materials and assemblies, window design decisions and case studies. 


California Integrated Waste Management Board: Environmental and Economic Assessment Tools

This site lists multiple web-based and downloadable tools that can be used for energy analyses.


DEER: Database for Energy Efficient Resource

This database is maintainted by the California Energy Commission and lists resources related to energy use and efficiency. 


Energy Design Resources - CA

Energy design tools are available to be used for free online or available to download.


Building Materials Property Table

This website lists performance characteristics for various envelope materials. 


One Building

This is an online forum of discussion for energy efficiency, computer model software users.

Publications

Building Energy Performance News

This website offers information on energy efficiency in buildings, highlighting success stories, breakthrough technology, and policy updates.


GreenSource magazine

Bimonthly publication on case studies and new technologies for energy efficiency in commercial buildings. 


Journal of Building Information Simulation

Computer modeling for building energy use.


AIA Local Leaders in Sustainability: Green Incentives

AIA publication highlighting local and state green building incentives.


Federal Research and Devlopment Agenda for Net-Zero Energy, High-Performance Green Buildings

2008 guidelines and performance goals from the National Science and Technology Council.

Software Tools

Building Energy Software Tools Directory

DOE tools for whole building analyses, including energy simulation, load calculation, renewable energy, retrofit analysis and green buildings tools.


MOIST

This is a tool available to download for envelope moisture analysis tool.


WUFI-ORNL/IBP

WUFI-ORNL/IBP is a menu-driven PC program which allows realistic calculation of the transient coupled one-dimensional heat and moisture transport in multi-layer building components exposed to natural weather.


Autodesk

Autodesk BIM software facilitates an improved way of working collaboratively, using a model created from coordinated, consistent design information.

CI-2009 LEED Online Sample Forms – EA

The following links take you to the public, informational versions of the dynamic LEED Online forms for each CI-2009 EA credit. You'll need to fill out the live versions of these forms on LEED
Online
for each credit you hope to earn.

Version 4 forms (newest):

Version 3 forms:

These links are posted by LEEDuser with USGBC's permission. USGBC has certain usage restrictions for these forms; for more information, visit LEED Online and click "Sample Forms Download."

Design Submittal

PencilDocumentation for this credit can be part of a Design Phase submittal.

LEED-CI Silver Office – EAp2

Complete documentation for achievement of EAp2 on a LEED-CI 2009 project.

537 Comments

0
0
mingyu Zhang energydesign
Apr 11 2016
Guest

Energy Star equipment

Project Location: China

Hi All:

Our project is a little bit special, so i wonder whether we can get the scores of EAp2-4. Energy Star Equipment.

Project owner rent 3 floors of a building, and lease it after decoration.
due to that, equipment won't be supplied by the owner, by the way we can submit any Energy Star verified equipment or electronics. But we have a requirement on tenant that they should use equipment that have Energy Star label or relevant local energy-efficiency label.

Is that possible ? Anyone have same experiences?
Thanks.

Post a Reply
0
0
Kristen Magnuson
Mar 18 2016
LEEDuser Member
4 Thumbs Up

video conferencing equipment

Project Location: United States

Our project has several pieces of video conferencing equipment (not just display screens), which are not ENERGY STAR certified. As far as we can tell, there is no relevant ENERGY STAR category for video conferencing equipment, so therefore we are thinking we should not include it on the EAp2 form. Has anyone successfully excluded video conferencing equipment, or received a review comment about it?

1
1
0
Marcus Sheffer LEED Fellow, 7group Mar 20 2016 LEEDuser Expert 59149 Thumbs Up

There is no category i see for video teleconferencing equipment but there are several categories that may apply to the components of such a system. Check audio.video, displays, etc. under electronics to make sure none of the components are included.

Post a Reply
0
0
Agata Mozer GO4IT SP Z OO SP K
Mar 16 2016
LEEDuser Member
511 Thumbs Up

new version od LEEDonline form

I was checking sample LEEDonline forms for this prerequisite which can be found on USGBC website and I nonticed that there is a new version of EAp2 form - v6. However this form is completely different than the prevous one (v4). The form is similar to the one for C&S projects and requires energy simulation. Is this how the LEEDonline form looks like if I register a new project now? Is energy simulation required now as part of the prerequisite?

1
1
0
Marcus Sheffer LEED Fellow, 7group Mar 16 2016 LEEDuser Expert 59149 Thumbs Up

The newest forms have been modified based on the LEED v4 forms.

Yes you would probably see these new forms if you registered a new 2009 project.

The prerequisite requirements did not change in LEED 2009. So the form should not be asking for a model.

Post a Reply
0
0
sebastian castañeda students students
Mar 04 2016
Guest
2 Thumbs Up

Minimun Energy Performance

Project Location: Peru

Greetings from Peru

I am a student of which I would like to know what to do in the case of minimum energy performance of a commercial interiors when you start from scratch and there is no information to enter the portfolio manager of energy start many thanks for your reply

1
1
0
Marcus Sheffer LEED Fellow, 7group Mar 04 2016 LEEDuser Expert 59149 Thumbs Up

None of the requirements of this prerequisite requires the energy use data for the space. All of the requirements are simply compliance issues.

Post a Reply
0
0
Annalise Reichert Project Manager stok
Mar 03 2016
LEEDuser Member
296 Thumbs Up

Existing Lighting in a TI

I am working on a TI retrofit project that did not replace any existing lighting in their space due to budget constraints. The existing lighting fixtures do not meet the required 10% LPDLighting power density (LPD) is the amount of electric lighting, usually measured in watts per square foot, being used to illuminate a given space. reduction from the ASHRAE 90.1-2007 baseline. There is a LEED correction for the CI reference guide (reference guide correction 100001075) states "if the scope of the lighting work will replace less than half of the existing fixtures with new ones and will use no additional power, no other alterations are necessary".

Does this mean if a project does not replace any existing lighting, they do not have to have to comply with the requirements of Section 9 of ASHRAE 90.1-2007? Has anyone ever rn into this issue on a project before?

1
1
0
Marcus Sheffer LEED Fellow, 7group Mar 03 2016 LEEDuser Expert 59149 Thumbs Up

I believe that is correct. Unless the documents indicate otherwise, you are only required to address items within your scope of work.

Post a Reply
0
0
Poorva Keskar
Feb 19 2016
Guest
180 Thumbs Up

EA Prerequisite 2

Project Location: India

In the Commercial Interiors project, the envelope and the base HVAC system is not in the scope of the interior project. HVAC for only a few cabins are in the scope. Please suggest the compliance path for this case.
Mandatory and Prescriptive modes of ASHRAE 90.1 cannot be complied to. How can we demonstrate compliance?

1
1
0
Marcus Sheffer LEED Fellow, 7group Feb 19 2016 LEEDuser Expert 59149 Thumbs Up

You will need to comply with the requirements related to the systems being installed in your scope of work.

Post a Reply
0
0
PAULA HERNANDEZ MRS. INGENIERO MARIO PEDRO HERNANDEZ
Feb 16 2016
LEEDuser Member
882 Thumbs Up

LEED V4 - TENANT SPACE ENERGY MODELING

Project Location: Argentina

Hi,
Regarding the Energy Performance Calgulator that should be used instead of Table 1.4, my questions are:
1. To simulate a tenant spaceTenant space is the area within the LEED project boundary. For more information on what can and must be in the LEED project boundary see the Minimum Program Requirements (MPRs) and LEED 2009 MPR Supplemental Guidance. Note: tenant space is the same as project space. energy efficiency, do we have to introduce the whole building characteristics, or is it enough to include just the Tenant Space scope of work?.
2. If it is so, do we have to indicate the Primary HVAC System corresponding to the whole building or just the one corresponding to the Tenant Space Scope of work, which would be an excpetion?
Thank you,

1
4
0
Marcus Sheffer LEED Fellow, 7group Feb 19 2016 LEEDuser Expert 59149 Thumbs Up

You do not need to do an energy simulation to demonstrate compliance with this prerequisite. You only need to demonstrate compliance related to the requirements for the systems in your scope of work.

2
4
0
PAULA HERNANDEZ MRS., INGENIERO MARIO PEDRO HERNANDEZ Feb 19 2016 LEEDuser Member 882 Thumbs Up

Hi Marcus,
As I understand from the Reference Guide for Interior Design and Construction - V4, one of the options to comply with the Prerequisite is the Tenant-Level Energy Simulation.
This is the Option that the Owner has asked for, and he is also interested in achieving EA_c1 with the máximum possible points.
So I have no chance, I have to do the energy simulation at last....

3
4
0
Marcus Sheffer LEED Fellow, 7group Feb 19 2016 LEEDuser Expert 59149 Thumbs Up

I missed your reference to v4 since this is a LEED 2009 forum. You should probably post your question to the v4 forum. To answer, yes you have to do a model for v4. In order to do so you will need to model some of the whole building characteristics which will vary depending on the project. Exactly what you model will depend on many factors.

4
4
0
PAULA HERNANDEZ MRS., INGENIERO MARIO PEDRO HERNANDEZ Feb 28 2016 LEEDuser Member 882 Thumbs Up

Thank you Marus, I will post my question to the V4 fórum

Post a Reply
0
0
James Keohane, PE LEED BD+C CxA CPMP Sustainability and Commissioning Consultant Sustainable Engineering Concepts, LLC
Jan 26 2016
LEEDuser Member
903 Thumbs Up

Existing Building Envelope does NOT Meet ASHRAE 90.1-2007

Project Location: United States

How do you meet and demonstrate requirements of EApr2 if elements of the existing building envelope does NOT meet 90.1-2007 Prescriptive measures? One thought: Can you use Building Performance Rating( appendix G) to demonstrate overall performance and sidestep existing building envelope weaknesses?

1
1
0
Marcus Sheffer LEED Fellow, 7group Jan 26 2016 LEEDuser Expert 59149 Thumbs Up

You are only required to meet the mandatory and prescriptive measures associated with your scope of work. So if you are not replacing the windows or adding to the walls you do not have to meet those requirements.

Post a Reply
0
0
Ciaran McCabe
Jan 07 2016
LEEDuser Member
159 Thumbs Up

EER to COP conversion

Hi, I am trying to document the efficiency for comms room AC units and a data centre down flow AC units. As we are in Europe the efficiency is quoted by manufacturers in EER. ASHRAE 90.1 2007 Table 6.8.1D refers to COP. Does anyone have an accepted conversion. e.g an EER will have a COP of ???

1
3
0
Marcus Sheffer LEED Fellow, 7group Jan 07 2016 LEEDuser Expert 59149 Thumbs Up

COP = (EER)/3.413

2
3
0
Ciaran McCabe Jan 07 2016 LEEDuser Member 159 Thumbs Up

Thanks. Is there any exemptions for smaller AC units. I have some AC units that have an EER of 3.57 and this would equate to a COP of 1.046 which is less than the minimum performance for LEED (2.49). I can't get units with a COP of 2.49 as this would mean an EER of 8.5 which is not available in the marketplace ? Is my interpretation wrong ?

3
3
0
Marcus Sheffer LEED Fellow, 7group Jan 08 2016 LEEDuser Expert 59149 Thumbs Up

I am not aware of any exceptions for small air conditioners. The EER of the units you mention is well below what is legal in the US. These minimum efficiencies are mandatory for LEED projects.

Post a Reply
0
0
Ciaran McCabe
Jan 06 2016
LEEDuser Member
159 Thumbs Up

Standby Losses

How does one calculate the required Standby loss for a domestic hot water calorifier. I have the rated values in kwhA kilowatt-hour is a unit of work or energy, measured as 1 kilowatt (1,000 watts) of power expended for 1 hour. One kWh is equivalent to 3,412 Btu./day from the manufacturer but not sure how or where I can get the required values from.

1
3
0
Marcus Sheffer LEED Fellow, 7group Jan 06 2016 LEEDuser Expert 59149 Thumbs Up

The standby loss (SL) is maximum BtuA unit of energy consumed by or delivered to a building. A Btu is an acronym for British thermal unit and is defined as the amount of energy required to increase the temperature of 1 pound of water by 1 degree Fahrenheit, at normal atmospheric pressure. Energy consumption is expressed in Btu to allow for consumption comparisons among fuels that are measured in different units./h based on a 70°F temperature difference between stored water and ambient requirements. See the note at the bottom of Table 7.8 for the SI equivalent units.

The formula for a greater than 12 kW electric water heater would be -
20 + (35 x square root of V) = SL

2
3
0
Ciaran McCabe Jan 06 2016 LEEDuser Member 159 Thumbs Up

Many thanks. I note that there is no SL formula for electric water heaters <12kW OR gas storage water heaters <22.98kW. Is it not applicable for smaller installations ?

3
3
0
Marcus Sheffer LEED Fellow, 7group Jan 06 2016 LEEDuser Expert 59149 Thumbs Up

Correct for the smaller heaters you calculate EF and not SL.

Post a Reply
0
0
Ciaran McCabe
Jan 05 2016
LEEDuser Member
159 Thumbs Up

EA Pr 2 - Water Heating Equipment

I have a 12kW electric water cylinder and a 12kW direct gas fired water heater. Can anyone please explain what I need to check to ensure the performance requirements comply with ASHRAE 90.1 2007 table 7.8. I dont understand the rating condition and performance required headings.

1
2
0
Marcus Sheffer LEED Fellow, 7group Jan 06 2016 LEEDuser Expert 59149 Thumbs Up

The Subcategory or Rating Condition refers to the type of water heater and/or its storage capacity.

The Performance Required is a formula used to determine the minimum efficiency of the equipment. So for a 12 kW electric, tank-type water heater the formula you use is 0.93–0.00132V EF. The note below the table identifies the variables V and EF. A clearer way to see this formula would be EF = 0.93–0.00132V. So put the volume of the tank in the equation and calculate the EF.

2
2
0
Ciaran McCabe Jan 06 2016 LEEDuser Member 159 Thumbs Up

Great thanks.

Post a Reply
0
0
Gwen Sheinfeld Director, Corporate Sustainability Healthy Buildings
Nov 18 2015
LEEDuser Member
155 Thumbs Up

CI Lighting Compliance Exemption out of scope

Project Location: United States

Our CI project does not have lighting included in its scope (very cost prohibitive, for the way lighting is layed out in the space) and base buildingThe base building includes elements such as the structure, envelope, and building-level mechanical systems, such as central HVAC, etc. lighting is being planned to be used as is. Lighting in the space is above the minimum LEED requirement (10% below Ashrae). Since its out of scope can we receive an exemption for this, or will we have to drop LEED certification altogether?

1
4
0
Marcus Sheffer LEED Fellow, 7group Nov 18 2015 LEEDuser Expert 59149 Thumbs Up

You are only required to comply with requirements related to your scope of work.

2
4
0
Michael Smithing Director - Green Building Advisory, Colliers International Nov 18 2015 LEEDuser Member 3521 Thumbs Up

My understanding is that the project space must meet the LPDLighting power density (LPD) is the amount of electric lighting, usually measured in watts per square foot, being used to illuminate a given space. requirement (10% below ASHRAE) to meet the prerequisite even if lighting is not included in the scope of work. This is - to the best of my knowledge - one of the few places where compliance is mandatory even for items not included in the project scope of work. (I'd love to be proven wrong here.)

The LEED Online form specifically requires completion of a table for the LPD and states that a 10% or greater reduction is required to document compliance.

The reference guide is unclear, but at the beginning of the implementation section it indicates that "If provisions of the base buildingThe base building includes elements such as the structure, envelope, and building-level mechanical systems, such as central HVAC, etc. are managed entirely by the Landlord (and thus cannot be changed by the building tenant) and do not meet the requirements of ASHRAE 90.1-2007, then only areas that are not part of the tenant scope of work and exclusively controlled by the Landlord are exempt from the requirements of the standard."

As you indicate the issue is one of cost rather than control, it appears unlikely that this exemption could be successfully applied here.

3
4
0
Marcus Sheffer LEED Fellow, 7group Nov 20 2015 LEEDuser Expert 59149 Thumbs Up

I am not 100% certain that an exemption would be allowed by the reviewer but it does not make any sense to me that they would require compliance beyond the scope of work since that is the fundamental dividing line between CI and CS. I would argue it if they do. Contact GBCIThe Green Building Certification Institute (GBCI) manages Leadership in Energy and Environmental Design (LEED) building certification and professional accreditation processes. It was established in 2008 with support from the U.S. Green Building Council (USGBC). through the contact me on the web site and ask them directly.

4
4
0
Gwen Sheinfeld Director, Corporate Sustainability , Healthy Buildings Nov 23 2015 LEEDuser Member 155 Thumbs Up

Got feedback from the GBCIThe Green Building Certification Institute (GBCI) manages Leadership in Energy and Environmental Design (LEED) building certification and professional accreditation processes. It was established in 2008 with support from the U.S. Green Building Council (USGBC). technical experts at Green Build, the only way to meet this prerequisite (if lighting is not in scope) is to perform an energy model and show compliance. They referenced the LEED InterpretationLEED Interpretations are official answers to technical inquiries about implementing LEED on a project. They help people understand how their projects can meet LEED requirements and provide clarity on existing options. LEED Interpretations are to be used by any project certifying under an applicable rating system. All project teams are required to adhere to all LEED Interpretations posted before their registration date. This also applies to other addenda. Adherence to rulings posted after a project registers is optional, but strongly encouraged. LEED Interpretations are published in a searchable database at usgbc.org.# 10412 and 10421.

Post a Reply
0
0
Michael Smithing Director - Green Building Advisory Colliers International
Oct 14 2015
LEEDuser Member
3521 Thumbs Up

Relocated / Occupant owned task lighting

Our project does not include task lighting; however several users have brought existing task lighting with them from the previous premises to the new premises. It is unclear whether the task lights are owned by the project owner or the occupants, although as the project owner has a corporate policy against task lighting, I presume that ownership could be transferred to the occupants if this made any difference. The photographs supplied as documentation for PIf4 were taken after occupation and show task lighting on a number of desks.

The review team has indicated that we need to include this task lighting in our LPDLighting power density (LPD) is the amount of electric lighting, usually measured in watts per square foot, being used to illuminate a given space. calculation.

The credit language requires design compliance for all portions of the building within the Tenant's scope of work; however it also indicates that the LPD must be applied to the entire tenant's space. It is clear that pre-existing lighting fixtures in the space must be included in the calculation; however the situation here is somewhat different.

Has anyone had experience excluding task lighting which is installed by the project occupants? These will fluctuate over the life of the space as occupants come and go and as they do not form part of the lighting design it is difficult to include them in the LPD calculation in any meaningful way.

1
4
0
Marcus Sheffer LEED Fellow, 7group Oct 14 2015 LEEDuser Expert 59149 Thumbs Up

Task lights have always counted in LPDLighting power density (LPD) is the amount of electric lighting, usually measured in watts per square foot, being used to illuminate a given space. calculations. Ownership of the light fixture does not make any difference. What is plugged in is what counts. Count what is there now and include it.

Perhaps the owner should consider finding out why folks feel they need task lights or maybe enforce their own policy if the lighting system has been designed to negate their necessity. A task/ambient system is often the most energy efficient so I am not sure why they would have such a policy.

2
4
0
Christopher Schaffner Principal & Founder, The Green Engineer, Inc. Oct 14 2015 LEEDuser Expert 8531 Thumbs Up

The moral of the story is that you should submit your design phase before occupancy. What happens after move in really should not impact a "design and construction" rating system.

Also, note that "furniture-mounted supplemental task lighting that is controlled by automatic shutoff" can be excluded per 90.1-2007 9.2.2.3 exception (p). So another alternative is to buy these folks a power strip with an occupancy sensor attached. http://www.wattstopper.com/products/sensors/plug-load-controls/idp-3050....

3
4
0
Michael Smithing Director - Green Building Advisory, Colliers International Oct 14 2015 LEEDuser Member 3521 Thumbs Up

Christopher - Thanks for the help, the product recommended could be very useful. I've used the 9.2.2.3 exception on another project when we were able to include the automatic shut-off into the design but was not aware a post-design solution existed.

As the fit-out period for most of our CI projects is very short we typically go for a combined review. We've learned something important about the timing of the interior photographs on this project.

Marcus - the general policy against task lighting is because occupants often do not turn the fixtures off when they leave. I know they've also had issues with older (non-LED) fixtures - in one instance an occupant left a stuffed animal next to a task light and it caught fire - and then complained that someone had "stolen" their animal.

4
4
0
Marcus Sheffer LEED Fellow, 7group Oct 15 2015 LEEDuser Expert 59149 Thumbs Up

So the policy should ban incandescent/halogen task lights.

Post a Reply
0
0
CBRE Sustainable Advisory CBRE, Inc.
Oct 09 2015
LEEDuser Member
10 Thumbs Up

Power over Ethernet (PoE) telephones.

Power over Ethernet (PoE) telephones: Are they required to be included within EAp2 equipment?
Any advice and suggestions will be greatly appreciated.

1
2
0
Michael Smithing Director - Green Building Advisory, Colliers International Oct 11 2015 LEEDuser Member 3521 Thumbs Up

You need to include all equipment in any category which has an Energy Star rating. An Energy Star rating for Voice over IP (VoIP) phones was introduced on October 1, 2014, and thus VoIP phones need to be included in the documentation of all projects registered after that date.

While there is considerable overlap between VoIP and PoE phones, the categories are not the same.

For what it's worth, the Cisco systems we've investigated thus far are NOT energy star compliant.

2
2
0
Michael Smithing Director - Green Building Advisory, Colliers International Oct 14 2015 LEEDuser Member 3521 Thumbs Up

I was reviewing the LI for EAp2 this afternoon and saw a reference to LI 1044 (in LI 10400) which indicates that equipment purchased within 2 years of the introduction of the first Energy Star standard may be excluded if all such equipment is excluded consistently. This means that you are likely off the hook on the IP phones for now.

Post a Reply
0
0
Yaser Al Sharif
Aug 04 2015
Guest
171 Thumbs Up

Decorative Lighting

Project Location: Jordan

Dear All,

I have three questions:

- We are applying for a commercial interior project, we received our final review (after prem. review) I received a new comment that wasn't mentioned in a prem. review stage, should we go for an appeal review or there is anything else we can do?
- If we choose to go for an appeal review the comment indicates that: The decorative and retail luminaires must be included in the calculations to demonstrate compliance.
However in the ASHRAE standard 90.1-2007/9.2.2.3 : any such lighting shall not be exempt unless it is an addition to general lighting and is controlled by an independent control device.
which in our project there are decorative items with separate control that I excluded them from the calculations.

- How many times can I submit for an appeal review?

Can anyone help ASAP?

Thanks!

1
1
0
Marcus Sheffer LEED Fellow, 7group Aug 04 2015 LEEDuser Expert 59149 Thumbs Up

The reviewer is not supposed to comment on something new in the final review if they missed it in the preliminary review. If it was based on new information you provided in response to the preliminary review comments then they can hold you accountable.

So if the reviewer made a mistake you can challenge it via the GBCIThe Green Building Certification Institute (GBCI) manages Leadership in Energy and Environmental Design (LEED) building certification and professional accreditation processes. It was established in 2008 with support from the U.S. Green Building Council (USGBC). Contact Us. If not then you need to appeal.

In order to be exempt the lighting in question needs to be on the list of exceptions. Decorate/retail lighting is not on the list (except for retail display windows). Section 9.6.2 does allow additional lighting allowance for some decorative and retail lighting.

Hopefully you only need to appeal once, however, you can appeal as many times as you like and are willing to pay for.

Post a Reply
0
0
Fabio Frescia PM, LEED AP Arcadia (Thailand) Company Limited
Jun 17 2015
LEEDuser Member
88 Thumbs Up

LEED CI proposal

Hi all,
I am about to prepare a proposal for a client that wants to renovate his 2 story office inside a 20 years old building and he wants LEED CI certification.
Do I need to include an energy simulation service? Does anyone have a sample of SOW and deliverables to be included in a LEED CI proposal? Thanks!!

1
1
0
Marcus Sheffer LEED Fellow, 7group Jun 17 2015 LEEDuser Expert 59149 Thumbs Up

An energy model is not usually required for a CI project. The SOW depends on far too many variables to say what you need to include. We often are engaged to develop an initial scorecard first as only then can a SOW be developed with any degree of accuracy. We also often ask the client to tell us the scope and talk to them about it if they are unsure.

Post a Reply
0
0
Himanshu Dehra
Jun 16 2015
Guest
7 Thumbs Up

VRV Units Prescriptive Compliance in LEED CI 2009

Project Location: India

The project is installing VRV units of Daikin (VRV Model # RXYQ18PY16). How shall we go for prescriptive compliance as per ASHRAE 90.1 2007 and Core Performance Guide, since they are not covered at that time? How shall we obtain points under EAc1.3- HVAC - Equipment Efficiency?

1
1
0
Marcus Sheffer LEED Fellow, 7group Jun 17 2015 LEEDuser Expert 59149 Thumbs Up

Technically VRF is not covered by 90.1-2007 so it becomes basically exempt. I would look to ASHRAE 90.1-2013 to demonstrate minimum compliance however, since they are covered there. Not sure about Core Performance or EAc1.3.

Post a Reply
0
0
Yaser Al Sharif
May 26 2015
Guest
171 Thumbs Up

Energy star

Energy star

I am working on cl commercial project , when we resisted to the leed certificate we didn't have any energy star equipment's in our building , but to achieve more points we decided to replace our equipment's like laptops , printers and pc's , the question :

in the online form there are table required from me to fill it with energy star and non energy star equipment , should i fill it with energy star equipment only that i bought it in this case because they are new equipment i bought it after i registered to the leed certificate ?????????

another question :

what is the documentation should i provide it with the leed online form to achieve minimum energy performance and this credit ?? is the sheet for laptop and printer is enough ??????

another question : i took the rated powerRated power is the nameplate power on a piece of equipment. It represents the capacity of the unit and is the maximum that it will draw. for our laptops in the company , i read it on nameplate about 90 watt , and 450 watt for printer , is that okay right or wrong ??? and for desk computer should i enter the case and monitor together or i entered them separately ????

1
1
0
Marcus Sheffer LEED Fellow, 7group Jun 17 2015 LEEDuser Expert 59149 Thumbs Up

Registration date does not matter. What matters is what is in the scope of work. Anything in the scope of work counts.

Yes be prepared to show that the equipment installed is Energy Star.

Nameplate data would work but it is sometimes misleading. You might want to check with the manufacturer.

I think you would enter the monitor and desktop separately.

Post a Reply
0
0
Sarah Simchuk
May 19 2015
Guest
17 Thumbs Up

EAp2-4: Energy Star equipment: conversion from kWa to Watts

Project Location: United States

I'm attempting to register the energy star equipment for my project under Table EAp2-4. The table asks for Rated PowerRated power is the nameplate power on a piece of equipment. It represents the capacity of the unit and is the maximum that it will draw. in WATTS. Every spec I have found for the refrigerator, washer and dryer list the power in kWa. I found a calculator from kWa to W online, but it asks to divide by number of hours.

Has anyone come across this conversion? Should I divide by hours in a day, hours in a year, etc?

1
4
0
Marcus Sheffer LEED Fellow, 7group May 20 2015 LEEDuser Expert 59149 Thumbs Up

I have not seen kWa but it sounds like kW (1000 watts).

If it said kWhA kilowatt-hour is a unit of work or energy, measured as 1 kilowatt (1,000 watts) of power expended for 1 hour. One kWh is equivalent to 3,412 Btu. then dividing by the hours makes sense since kW times hours of use = kWh.

2
4
0
Sarah Simchuk May 20 2015 Guest 17 Thumbs Up

I misspoke, I meant that most of the energy is being quoted in annual kWhA kilowatt-hour is a unit of work or energy, measured as 1 kilowatt (1,000 watts) of power expended for 1 hour. One kWh is equivalent to 3,412 Btu., not kWa. Knowing that this is an annual calculation of kW (1000 watts), is there a recommended conversion to take this to rated Watts as required by LEED. None of the specifications i've looked at have communicated the power in Watts.

3
4
0
Gaston Michaud Mechanical Engineer May 20 2015 Guest 377 Thumbs Up

You should be able to get the current in amps from the spec sheet, and then you multiply it by the local voltage and you get watts.
In other cases, I have assumed that the refrigerator compressor is on somewhere between 5-6 hours per day, and used that to estimate the rated powerRated power is the nameplate power on a piece of equipment. It represents the capacity of the unit and is the maximum that it will draw. based on the annual kW-h.

4
4
0
Marcus Sheffer LEED Fellow, 7group May 20 2015 LEEDuser Expert 59149 Thumbs Up

If you have kWhA kilowatt-hour is a unit of work or energy, measured as 1 kilowatt (1,000 watts) of power expended for 1 hour. One kWh is equivalent to 3,412 Btu. that should be for a period of time. You then need the hours of use (run time) to get the watts. The kWh ratings are determined using a set quantity of run time so you might need to find out the testing protocol they used to determine the kWh and work backward. However, you should be able to determine the watts as Gaston has indicated.

Post a Reply
0
0
Yaser Al Sharif
May 19 2015
Guest
171 Thumbs Up

Rated power

From where can i take rated powerRated power is the nameplate power on a piece of equipment. It represents the capacity of the unit and is the maximum that it will draw. for equipments like laptop , i read it on laptop about 55wh then i divded it by work hours give me 6.7watt , is that right ??????

1
4
0
Marcus Sheffer LEED Fellow, 7group May 19 2015 LEEDuser Expert 59149 Thumbs Up

Name plate data for many electronic devices will be inaccurate. Your value sounds low for a laptop.

2
4
0
Michael Smithing Director - Green Building Advisory, Colliers International May 20 2015 LEEDuser Member 3521 Thumbs Up

You definitely should not divide by work hours - the form requires the rated powerRated power is the nameplate power on a piece of equipment. It represents the capacity of the unit and is the maximum that it will draw. - which is the value on the name plate. You might check the technical specification for the product online.

3
4
0
Yaser Al Sharif May 20 2015 Guest 171 Thumbs Up

but the nameplate on laptop give me the rated powerRated power is the nameplate power on a piece of equipment. It represents the capacity of the unit and is the maximum that it will draw. in watt houre , the form on leedonline asks for rated power in watt so i should convert it from watt hour to watt by divided it on the works hour , right ????

4
4
0
Marcus Sheffer LEED Fellow, 7group May 20 2015 LEEDuser Expert 59149 Thumbs Up

I generally do not see watt hours on the name plate. There is usually a watt value or sometimes volts and amps for larger equipment.

Post a Reply
0
0
Devanand Ragbir Mechanical Engineer Devserv Ltd
May 13 2015
LEEDuser Member
78 Thumbs Up

LEED CI - EA p2- Mandatory requirements - compliance forms

Our CI space is bounded by the base buildingThe base building includes elements such as the structure, envelope, and building-level mechanical systems, such as central HVAC, etc.'s envelope on 2 sides. We will be adding shades to the windows. Is it a requirement for us to do the envelope compliance forms?
Also we utilized existing air conditioning ductwork in the space, changed the diffusersIn an HVAC context, diffusers disperse heating, cooling, or ventilation air as it enters a room, ideally preventing uncomfortable direct currents and in many cases, reducing energy costs and improving indoor air quality (IAQ). In light fixtures, diffusers filter and disperse light. and then balanced the air flow. We are inserting new filters in the base building AC system and ventilation system which serves the space. Is it a requirement for us to submit the the HVAC compliance forms?

1
3
0
Michael Smithing Director - Green Building Advisory, Colliers International May 14 2015 LEEDuser Member 3521 Thumbs Up

We have certified multiple projects with a similar scope of work and have never submitted these, nor have they been requested.

2
3
0
Marcus Sheffer LEED Fellow, 7group May 14 2015 LEEDuser Expert 59149 Thumbs Up

You are only required to document what is in your scope of work. Does not sound like anything in your scope would show up on these forms.

3
3
0
Devanand Ragbir Mechanical Engineer, Devserv Ltd May 14 2015 LEEDuser Member 78 Thumbs Up

Thanks for the prompt reply

Post a Reply
0
0
André Harms Ecolution Consulting
Mar 25 2015
LEEDuser Member
136 Thumbs Up

ASHRAE 90.1-2007: 6.4.3.4.2 building height exemption

Project Location: South Africa

The client of an commercial interiors project location wants to avoid the use of motorized dampers where possible. The project extends over only the third (top) floor and a section of the first level basement of an existing office building . I was wondering if we can motivate exemption under the "buildings less than three stories in height above grade" as the project is only active across two floors. Do you have any guidance on that?

1
2
0
André Harms Ecolution Consulting Apr 13 2015 LEEDuser Member 136 Thumbs Up

Good morning, I was wondering if anyone had any thoughts regarding this request or if there is no way around motorised dampers.
Many thanks in advance.

2
2
0
Marcus Sheffer LEED Fellow, 7group Apr 14 2015 LEEDuser Expert 59149 Thumbs Up

For LEED purposes I think that you would qualify for the exception. The LEED CI requirements are based on your scope of work and your scope of work would comply with the mandatory provision with a non-motorized damper.

Post a Reply
0
0
Allen Cornett Sustainable Consultant INSPEC Sustainability Group LLC
Feb 26 2015
LEEDuser Member
208 Thumbs Up

Owner installed lighitng

I am trying to find out if a building owner is installing new lighting in a space, will a future tenant be able to included the existing lighting in the lighting power density calculations for EAp2/EAc1.1? Thank you in advance.

1
1
0
Marcus Sheffer LEED Fellow, 7group Feb 27 2015 LEEDuser Expert 59149 Thumbs Up

The ASHRAE 90.1-2007 baseline for lighting is always the lighting power density values in the standard, not the existing condition.

Post a Reply
0
0
Gustav Alfaro Mechanical Engineer
Feb 13 2015
LEEDuser Member
243 Thumbs Up

Demand control ventilation requirement

Hi to all:

In our project we have a cafeteria (2,000ft2) with the following features:

1. a density of 55 people per 1,000ft2
2. The outdoor airflow (3,600 cfm) is being delivered by an DOAS
3. The zone in conditioned with DX constant speed systems

Does this system require a DCV in order to comply with the mandatory provisions?

Thanks in advance.

Start a new LEED comment thread

Apr 30 2016
Type the characters you see in this picture. (verify using audio)
Type the characters you see in the picture above; if you can't read them, submit the form and a new image will be generated. Not case sensitive.

Copyright 2016 – BuildingGreen, Inc.