NC-2009 EAp2: Minimum Energy Performance

  • NC EAp2 Credit Req's Diagram
  • Check updated requirements

    USGBC's membership approved an update to LEED 2009 effective April 8, 2016. The update only affects LEED 2009 projects registered on or after that date.

    Project teams will be required to earn a minimum of four points in EAc1, effectively making EAp2 more stringent. The referenced energy standard and modeling requirements are not changed. Buildings falling under the proposed change can use the same methodologies and referenced standards, but will need to earn additional points in order to achieve certification. 

    The intent of the change is to bring LEED 2009 energy requirements more up to date, as LEED 2009 continues to be the predominant LEED rating system, even though the more up-to-date LEED v4 has also become available.

    Beyond code compliance, but doable

    This prerequisite is a big one, not only because it’s required for all projects, but also because it feeds directly into EAc1: Optimize Energy Performance, where about a fifth of the total available points in LEED are at stake. Master these minimum requirements, and you can use the same compliance path as in EAp2 to earning points.

    You won’t earn the prerequisite by accident, though. Although “energy efficiency” is on everyone’s lips, the mandatory and performance-based requirements for EAp2 go beyond code compliance in most places. That said, there is nothing to stop you from meeting the requirements with a reasonable amount of effort, and the environmental benefits as well as the operational cost savings are significant.

    Most projects start by choosing which of the three available compliance paths to follow. We’ll look at them each in turn.

    Option 1: Energy modeling

    Option 1 alone gives you access to all of the points available through EAc1, and offers the most flexibility in giving you credit for innovative designs.

    First, you need to meet the mandatory requirements of ASHRAE 90.1-2007 for all major components, including the envelope, HVAC, lighting, and domestic hot water. ASHRAE 90.1 has had some changes and new mandatory requirements since the 2004 version, which was referenced on previous LEED systems, so be sure to review the standard carefully.

    Cost of changeEnergy efficiency is an area where it behooves project teams to start early and work together to maximize savings. Playing catch-up later on can be costly.Second, you need to demonstrate a 10% savings (5% for existing buildings) for your designed building compared with a baseline case meeting the minimum requirements of ASHRAE 90.1 (or Title 24-2005, Part 6 for California projects). You do this by creating a computer model following rules described in Appendix G of ASHRAE 90.1.

    Computer modeling offers the following key advantages:

    • It can be used to provide feedback on your design both early on, and as the design progresses, so it’s best to use in this way rather than simply demonstrating compliance.
    • It can help your team focus on the most cost-effective efficiency strategies, by plugging in different options and seeing the results.
    • If your building is unconventional or complex in design, an energy model is the best way to account for that.

    Your building type may not have a choice—you may have to follow this path, because both Options 2 and 3 are prescriptive compliance paths that are only available to specific building types and sizes.

    However, if your building type and size allow, and you don’t want to embark on the complex process of computer modeling, which also requires expert assistance from a modeler or from a member of the mechanical engineer’s team, the prescriptive compliance paths are a good way to earn the prerequisite simply by following a checklist.

    Solar shadingPassive design strategies such as shading to reduce solar heat gain are the most cost-effective ways to improve energy performance.Note, however, that when you get to EAc1, there are a lot fewer points on the table for the prescriptive paths, and that you have to follow each prescriptive requirement. These paths also require more collaboration and focus early on in design than you might think. The design team must work together to integrate all of the prescriptive requirements, and Option 3 even requires documentation of certain design processes.

    Option 2: ASHRAE Advanced Energy Design Guides

    The Advanced Energy Design Guides are published by ASHRAE for office, warehouse, and retail projects less than 20,000 ft2—so if you don’t fall into one of those categories, you’re not eligible for this path.

    These guides outline strategies to reduce energy use by 30% from 2001 levels, or an amount equivalent to approximately 10%–14% reduction from ASHRAE 90.1-2007. If you choose this compliance path, become familiar with the list of prescriptive requirements and commit to meeting all of them.

    Option 3: Advanced Buildings Core Performance Guide

    The Core Performance Guide path is a good option if all of the following are true:

    • your project is smaller than 100,000 ft2,
    • you cannot pursue Option 2 because there is not an ASHRAE guide for the building type,
    • your project is not a healthcare facility, lab, or warehouse,
    • and you would rather not commit to the energy modeling required for Option 1.

    Comply with all requirements within Sections 1 and 2 of the guide. If you choose this path, become familiar with the list of prescriptive requirements and commit to meeting them. Also note that it’s not just a list of prescriptive requirements, but a prescribed process for achieving energy efficiency goals. You must demonstrate that you considered a couple of alternate designs, for example, and that certain team meetings were held.

    Reduce energy loads first

    Energy efficiency offers a clear combination of environmental benefit and benefit to the owner through reduced operational expenses, and potentially reduced first costs, if you’re able to reduce the size and complexity of your HVAC system with a more efficient envelope.

    High-tech HVAC systems, and onsite renewable energy generation are often signature components of green buildings, but consider these strategies more “icing” on the cake, rather than a place to start. Start with building orientation and passive design features first. Also look at envelope design, such as energy-efficient windows, walls and roof, before looking at HVAC and plug loads. A poorly designed envelope with a high-tech HVAC system is not, on the whole, efficient or cost-effective. 

    District energy systems

    Projects connected to district energy systems will not be able to utilize the system efficiencies of the base plant to demonstrate compliance with the prerequisite. They can plan on benefiting from these systems under EAc1, however.

    Look for incentives

    Focusing on energy efficiency and renewable energy generation can seem to add costs to a project, but there are a variety of utility-provided, as well as state, and federal incentives available to offset those premiums. (See Resources.)

  • FAQs for EAp2

    Is it acceptable to model a split-type AC with inverter technology compressor as a heat pump, like modeling VRF?

    Ideally if the software you are using cannot model a technology directly then seek a published workaround related to your software. If you can't find a published workaround then model it as you think it should be modeled and explain how you have modeled it in the preliminary LEED submission.

    A portion of our building envelope is historic. Can we exclude it from our model?

    No, not if it is part of the LEED project. However, there is an exemption for existing building envelopes in Appendix G that allow you to model the existing condition in the baseline so you do not pay a penalty.

    For an existing building, do I need to rotate the model?

    No, not for an existing building.

    Our project has a large process load—75%. Despite our efforts to make an efficient HVAC design, the cost savings are minimal. What can we do to earn this prerequisite and be eligible for LEED certification? Is there any flexibility in how we model the process load?

    You must model accurately. Since you don't have enough savings in the building energy, find savings in the process. Either you will be able to demonstrate that compared to a conventional baseline the process being installed into the factory is demonstrably better than "similar newly constructed facilities," allowing you to claim some savings, or the owner needs to install some energy-saving measures into the process to get the project the rest of the way there. Either option can be difficult, but not impossible.

    Account for process load reductions through the exceptional calculation method. A baseline must be established based on standard practice for the process in your location. Any claim of energy savings needs a thorough narrative explaining the baseline and the strategy for energy savings along with an explanation of how the savings were calculated.

    Our process load is higher than 25%. Do we have to justify that?

    It is common to have a 80%–90% process load in a manufacturing facility. The 25% default in LEED is based on office buildings. If you think your load is lower than 25%, it is recommended that you explain why in a short narrative. It is also recommended to briefly explain it if your load is 25% exactly, since that level commonly reveals that the process loads were not accurately represented.

    Do the required savings for this prerequisite (and credit) need to come only from building energy, or also process loads?

    The energy savings are based on the whole building energy use—building and process. LEED does not stipulate exactly where they come from.

    Our local code references ASHRAE 90.1-2010. Should I use that for my documentation, or 90.1-2007?

    For LEED 2009 you'll need touse 90.1-2007. There were some significant changes in 90.1-2010—too many to account for in your LEED review, and your project would also have a much harder time demonstrating the same percentage energy savings.

    Our project doesn't have enough energy savings to earn the prerequisite. Can we get there by incorporating onsite renewables?

    Yes according to LEED, although it is not recommended as a best practice, and it is usually more cost-effective to invest in energy savings in the building.

    Can I claim exterior lighting savings for canopy lighting even though a baseline model cannot include shading elements?

    You can assume exterior lighting savings for canopies against the baseline, but not the shading effects of canopies.

    The project is built on a site with existing exterior lighting installed. How should this be accounted for?

    If exterior lighting is present on the project site, consider it as a constant in both energy model cases.

    Can mezzanines open to floors below be excluded from the energy model?

    Any conditioned area must be included in the energy model.

    How do I provide a zip code for an international location?

    The Energy Star portion of the form does not apply to international projects.

    For a project outside the U.S., how do I determine the climate zone?

    Use the tables and definitions provided in 90.1 Appendix B to determine an equivalent ASHRAE climate zone.

    For a project outside the U.S., how do I determine the Target Finder score?

    International projects are not required to enter a Target Finder score. Target Finder is based on U.S. energy use data.

    Do hotel rooms need automatic light shut-off control?

    For Section 9.4.1.1c, a manual control device would be sufficient to comply with mandatory provisions.

    How commonly are the 90.1 mandatory compliance forms submitted as part of EAp2/EAc1?

    Submitting these forms is not common; however, it can be beneficial if you are applying for any exceptions.

    The Section 9 space-by-space method does not include residential space types. What should I use?

    Use the building area method.

    Can the Passive House Planning Package (PHPP) be used to energy model for LEED?

    Although there is no formal list of approved simulation tools, there are a few requirements per G2.2.1, including the ability of the program to provide hourly simulation for 8760 hours per year, and model ten or more thermal zones, which PHPP does not meet.

    Can the Trace 700 'LEED Energy Performance Summary Report' by uploaded to LEED Online in lieu of the Section 1.4 tables spreadsheet?

    The automated Trace 700 report provides less information than is requested by the Section 1.4 tables spreadsheet. The Section 1.4 tables spreadsheet must be completed.

    Which baseline HVAC system do I use if my building has no heating or air conditioning?

    Assign HVAC systems as per Appendix-G and Section 6 but set thermostatic setpointsSetpoints are normal operating ranges for building systems and indoor environmental quality. When the building systems are outside of their normal operating range, action is taken by the building operator or automation system. out of range so that systems never turn on.

    Our project has a diesel backup generator. Should we include it in our energy model?

    If it is only used for backup and not for regular use such as peak shaving—no.

    Can SHGC be higher in the proposed than in the baseline model?

    SHGC is not a mandatory provision so it is available for trade-off and can be higher than the baseline.

    Do I need to justify the electrical and fuel rates I am using in my model?

    You generally wouldn't need to upload any documentation, but particularly for a non-U.S. project, it may help to provide a short narrative about what they are based on.

Legend

  • Best Practices
  • Gotcha
  • Action Steps
  • Cost Tip

Pre-Design

Expand All

  • Discuss your project’s energy performance objectives, along with how those are shaping design decisions, with the owner. Record energy targets in the Owners Project Requirements (OPR) for the commissioning credits EAp1 and EAc3


  • You won’t earn this prerequisite by accident. The energy efficiency requirements here are typically much more stringent than local codes, so plan on giving it special attention with your team, including leadership from the owner. 


  • Consider stating goals in terms of minimum efficiency levels and specific payback periods. For example: “Our goal is to exceed a 20% reduction from ASHRAE 90.1, with all efficiency measures having a payback period of 10 years or less.”


  • Develop a precedent for energy targets by conducting research on similar building types and using the EPA’s Target Finder program. (See Resources.)


  • For Option 1 only, you will need to comply with the mandatory requirements of ASHRAE 90.1-2007, to bring your project to the minimum level of performance. The ASHRAE 90.1-2007 User’s Manual is a great resource, with illustrated examples of solutions for meeting the requirements.


  • ASHRAE 90.1-2007 has some additional requirements compared with 2004. Read through the standard for a complete update. The following are some samples. 

    • All exterior walls must be installed with rigid insulation of the spans across all floors. This can be accomplished by placing the insulation outside the air barrier. 
    • All exterior doors must be tested for maximum air leakage rate. 
    • All spaces must have independent lighting controls. 
    • Occupancy sensors must be installed in some spaces.
    • The minimum efficiency level of specific mechanical equipment has been raised.  

  • The prerequisite’s energy-reduction target of 10% is not common practice and is considered beyond code compliance. 


  • ClerestoryIndirect sunlight delievered through clerestories like this helps reduce lighting loads as well as cooling loads. Photo – YRG Sustainability, Project – Cooper Union, New York A poorly designed envelope with a high-tech HVAC system is not, on the whole, efficient or cost-effective. Start with building orientation and passive design features first when looking for energy efficiency. Also look at envelope design, such as energy-efficient windows, walls and roof, before looking at HVAC and plug loads. HVAC may also be a good place to improve performance with more efficient equipment, but first reducing loads with smaller equipment can lead to even greater operational and upfront savings. A poorly designed envelope with a high-tech HVAC system is not, on the whole, efficient or cost-effective. 


  • Don’t plan on using onsite renewable energy generation (see EAc2) to make your building energy-efficient. It is almost always more cost-effective to make an efficient building, and then to add renewables like photovoltaics as the “icing” on the cake.


  • Some rules of thumb to reduce energy use are:

    • Program similar spaces together to reduce distribution losses 
    • Use a window-to-wall ratio below 40%, on average
    • Use a window-to-wall ratio below 20% on east and west sides, to reduce low-angle solar gain, and glare; 
    • Reduce direct solar gain with solar shades or building geometry and orientation
    • Distribute heating and cooling loads uniformly throughout all facades for a smaller system size. 
    • Design a tight and well-insulated building envelope to reduce the heating load and improve HVAC performance
    • Use right-sized and efficient heating and cooling systems
    • Consider onsite renewable energy generation.

  • Choosing your compliance path


  • Find the best credit compliance path based on your building type and energy-efficiency targets. Use the following considerations, noting that some projects are more suited to a prescriptive approach than others. 


  • Option 1: Whole Building Energy Simulation requires estimating the energy use of the whole building over a calendar year, using methodology established by ASHRAE 90.1-2007, Appendix G. Option 1 establishes a computer model of the building’s architectural design and all mechanical, electrical, domestic hot water, plug load, and other energy-consuming systems and devices. The model incorporates the occupancy load and a schedule representing projected usage in order to predict energy use. This compliance path does not prescribe any technology or strategy, but requires a minimum reduction in total energy cost of 10% (5% for an existing building), compared to a baseline building with the same form and design but using systems compliant with ASHRAE 90.1-2007. You can earn additional LEED points through EAc1 for cost reductions of 12% and greater (8% for existing buildings). 


  • Option 2: Prescriptive Compliance Path: ASHRAE Advanced Energy Design Guide refers to design guides published by ASHRAE for office, school, warehouse, and retail projects. These guides outline strategies to reduce energy use by 30% from ASHRAE 90.1-2001 levels, or an amount equivalent to a 10%–14% reduction from the ASHRAE 90.1-2007 standard. If you choose this compliance path, become familiar with the list of prescriptive requirements and commit to meeting them. (See the AEDG checklist in the Documentation Toolkit.) 


  • Option 3: Prescriptive Compliance Path: Advanced Buildings Core Performance Guide is another, more basic prescriptive path. It’s a good option if your project is smaller than 100,000 ft2, cannot pursue Option 2 (because there is not an ASHRAE guide for the building type), is not a healthcare facility, lab, or warehouse—or you would rather not commit to the energy modeling required for Option 1. Your project can be of any other building type (such as office or retail). To meet the prerequisite, you must comply with all requirements within Sections 1 and 2 of the guide. If you choose this path, become familiar with the list of activities and requirements and commit to meeting them. (See Resources for a link to the Core Performance Guide and the Documentation Toolkit for the checklist of prescriptive items.)


  • EAc1: Optimize Energy Performance uses the same structure of Options 1–3, so it makes sense to think about the credit and the prerequisite together when making your choice. In EAc1, Option 1 offers the potential for far more points than Options 2 and 3, so if you see your project as a likely candidate for earning those points, Option 1 may be best.


  • Hotels, multifamily residential, and unconventional commercial buildings may not be eligible for either Option 2 or Option 3, because the prescriptive guidance of these paths was not intended for them. Complex projects, unconventional building types, off-grid projects, or those with high energy-reduction goals are better off pursuing Option 1, which provides the opportunity to explore more flexible and innovative efficiency strategies and to trade off high-energy uses for lower ones. 


  • If your project combines new construction and existing building renovation then whatever portion contains more than 50% of the floor area would determine the energy thresholds.


  • Options 2 and 3 are suitable for small, conventional building types that may not have as much to gain from detailed energy modeling with Option 1. 


  • Meeting the prescriptive requirements of Options 2 and 3 is not common practice and requires a high degree of attention to detail by your project team. (See the Documentation Toolkit for the Core Performance Guide Checklist.) These paths are more straightforward than Option 1, but don’t think of them as easy. 


  • Options 2 and 3 require additional consultant time from architects and MEP engineers over typical design commitment, which means higher upfront costs. 


  • Option 1 references the mandatory requirements of ASHRAE 90.1-2007, which are more stringent than earlier LEED rating systems that referred to ASHRAE 90.1-2004.


  • Option 1 energy simulation provides monthly and annual operating energy use and cost breakdowns. You can complete multiple iterations, refining energy-efficiency strategies each time. Payback periods can be quickly computed for efficiency strategies using their additional first costs. A building’s life is assumed to be 60 years. A payback period of five years is considered a very good choice, and 10 years is typically considered reasonable. Consult the OPR for your owners’ goals while selecting your efficiency strategies. 


  • Option 1 energy simulation often requires hiring an energy modeling consultant, adding a cost (although this ranges, it is typically on the order of $0.10–$0.50/ft2 depending on the complexity). However, these fees produce high value in terms of design and decision-making assistance, and especially for complex or larger projects can be well worth the investment. 


  • All compliance path options may require both the architectural and engineering teams to take some time in addition to project management to review the prescriptive checklists, fill out the LEED Online credit form, and develop the compliance document. 


  • Option 1: Whole Building Energy Simulation


  • The architect, mechanical engineer, and lighting designer need to familiarize themselves and confirm compliance with the mandatory requirements of ASHRAE 90.1-2007, sections 5–9.


  • Use simple computer tools like SketchUp and Green Building Studio that are now available with energy analysis plug-ins to generate a first-order estimate of building energy use within a climate context and to identify a design direction. Note that you may need to refer to different software may not be the one used to develop complete the whole building energy simulations necessary for LEED certification. 


  • Energy modeling can inform your project team from the start of design. Early on, review site climate data—such as temperature, humidity and wind, available from most energy software—as a team. Evaluate the site context and the microclimate, noting the effects of neighboring buildings, bodies of water, and vegetation. Estimate the distribution of energy across major end uses (such as space heating and cooling, lighting, plug loads, hot water, and any additional energy uses), targeting high-energy-use areas to focus on during design.  


  • Energy use breakdown pie chartUse a preliminary energy use breakdown like this one to identify target areas for energy savings.Perform preliminary energy modeling in advance of the schematic design phase kick-off meeting or design charrette. The energy use breakdown can help identify targets for energy savings and point toward possible alternatives. 


  • For existing buildings, the baseline energy model can reflect the pre-renovation features like rather than a minimally ASHRAE-compliant building. This will help you achieve additional savings in comparison with the baseline.


  • Projects generating renewable energy onsite should use Option 1 to best demonstrate EAp2 compliance and maximize points under EAc1. Other options are possible but won’t provide as much benefit. Like any other project, model the baseline case as a system compliant with ASHRAE 90.1-2007, using grid-connected electricity, and the design case is an “as-designed” system also using grid-connected electricity. You then plug in 100% onsite renewable energy in the final energy-cost comparison table, as required by the performance rating method (PRM) or the modeling protocol of ASHRRAE 90.1 2007, Appendix G. (Refer to the sample PRM tables in the Documentation Toolkit for taking account of onsite renewable energy.


  • LEED divides energy-using systems into two categories: 

    • (i) Regulated loads. Most prominent systems—space heating, cooling, ventilation and pumps, lighting, and hot water—are regulated by ASHRAE and LEED so are termed “regulated” loads. Your energy model can provide insights into the energy use of all these systems. 
    • (ii) Non-regulated loads are those which are not directly associated with creating a comfortable environment, but with plug loads for machines. These include elevators, kitchen equipment, office equipment, televisions, and activity-oriented lighting, such as in hospitals. Though these are very large energy loads, they are not regulated by ASHRAE 90.1 or by LEED. Energy savings from specifying better equipment is not counted in energy models. It is typically expected that these non-regulated loads contribute to 25% of energy use.

  • The energy model itself will not account for any change in plug loads from the baseline case, even if your project is making a conscious effort to purchase Energy Star or other efficient equipment. Any improvement made in plug loads must be documented separately, using the exceptional calculation methodology (ECM), as described in ASHRAE 90.1-2007. These calculations determine the design case energy cost compared to the baseline case. They are included in the performance rating method (PRM) table or directly in the baseline and design case model. 


  • Besides energy modeling, you may need to use the exceptional calculation methodology (ECM) when any of the following situations occur: 

    • The energy software cannot carry out calculations for a specific systems like natural ventilation or unusual HVAC equipment.
    • Process loads are different in baseline and design cases and can influence total energy cost savings.
    • The proposed design can’t demonstrate savings with the modeling protocol and needs additional calculations. 

  • Some energy-modeling software tools have a daylight-modeling capability. Using the same model for both energy and IEQc8.1: Daylight and Views—Daylight can greatly reduce the cost of your modeling efforts.


  • Option 2: Prescriptive Compliance Path—ASHRAE Advanced Energy Design Guides


  • Provide a copy of the AEDG for office, retail, or warehouse, as applicable, to each team member as everyone, including the architect, mechanical and electrical engineers, lighting designer, and commissioning agents, are responsible for ensuring compliance. These are available to download free from the ASHRAE website. (See Resources.) 


  • Find your climate zone before attempting to meet any detailed prescriptive requirements. Climate zones vary by county, so be sure to select the right one. (See the Documentation Toolkit for a list of climate zones by county.)


  • Develop a checklist of all requirements, and assign responsible team members to accomplish them. Hold a meeting to walk the team through the AEDG checklist for your project’s climate zone. Clarify specific design goals and prescriptive requirements in the OPR for EAp1: Fundamental Commissioning.


  • Early access to the AEDG by each team member avoids last-minute changes that can have cascading, and costly, effects across many building systems. 


  • The AEDG prescriptive requirements include: 

    • a maximum allowable window-to-wall ratio;
    • continuous insulation on the outside of walls;
    • roofs and floor-slab minimum thermal performance;
    • minimum window and door thermal performance;
    • minimum boiler and chiller efficiencies;
    • and mandatory use economizers or heat recovery ventilation.

    If your project team is not comfortable following these guidelines, consider switching to Option 1, which gives you more flexibility. 


  • Although Option 2 is generally lower cost during the design phase than energy modeling, the compliance path is top heavy—it requires additional meeting time upfront for key design members. 


  • Option 3: Prescriptive—Advanced Buildings Core Performance Guide


  • Provide a copy of the New Buildings Institute Advanced Buildings: Core Performance Guide to each team member. The guide is available to download free from the NBI website. (See Resources.) 


  • The guide provides practical design assistance that can be used throughout the design process.


  • Walk your team through the project checklist to clarify design goals and prescriptive requirements. 


  • The guide provides an outline for approaching an energy-efficient design, in addition to a list of prescriptive measures. The first of its three sections emphasizes process and team interaction rather than specific building systems or features. Advise the owner to read through the guide in order to understand what is required of the architect and engineers. 


  • Section 1 in the guide focuses on best practices that benefit the project during the pre-design and schematic design stages, such as analyzing alternative designs and writing the owner’s project requirements (OPR). 


  • Section 2 of the Core Performance Guide describes architectural, lighting, and mechanical systems to be included. Section 3 is not required for EAp2 but includes additional opportunities for energy savings that can earn EAc1 points. 


  • The guide mandates that your team develop a minimum of three different design concepts to select from for best energy use.


  • Though they can be a little daunting at first glance, a majority of the guide’s requirements overlap with other LEED credits, such as EAp1: Fundamental Commissioning, IEQp1: Minimum Indoor Air Quality Performance, and IEQc6.1: Controllability of Systems—Lighting Controls


  • This compliance path is top-heavy due to upfront consultant time, but it provides adequate structure to ensure that your project is in compliance with the prerequisite requirements. For some projects it may be less expensive to pursue than Option 1. 

Schematic Design

Expand All

  • The owner should now have finalized the OPR with the support of the architect, as part of the commissioning credits EAp1 and EAc3. The goals identified here will help your team identify energy-reduction and occupant-comfort strategies.


  • Consider a broad range of energy-efficiency strategies and tools, including passive solar, daylighting, cooling-load reduction, and natural ventilation to reduce heating and cooling loads. 


  • Develop the basis of design (BOD) document in conjunction with your mechanical engineer and architect for EAp1: Fundamental Commissioning, noting key design parameters to help strategize design direction as outlined in the OPR. 


  • The OPR and BOD serve the larger purpose of documenting the owner’s vision and your team’s ideas to meet those goals. The BOD is intended to be a work-in-progress and should be updated at all key milestones in your project. Writing the document gives you an opportunity to capture the owner’s goals, whether just to meet the prerequisite or to achieve points under EAc1.


  • Confirm that your chosen compliance path is the most appropriate for your project, and make any changes now. Following a review with the design team and owner, ensure that everyone is on board with contracting an energy modeler for Option 1 or meeting all the prescriptive requirements under Options 2 or 3. 


  • Sometimes teams change from Option 1 to Options 2 or 3 very late in the design phase for various reasons including not realizing the cost of energy modeling. Making that change is risky, though: the prescriptive paths are all-or-nothing—you must comply with every item, without exception. Evaluate each requirement and consult with the contractor and estimator to ensure the inclusion of all activities within project management. 


  • To avoid costly, last-minute decisions, develop a comprehensive, component-based cost model as a decision matrix for your project. The model will help establish additional cost requirements for each energy conservation measure. It will also illustrate cost reductions from decreased equipment size, construction rendered unnecessary by energy conservation measures, and reduced architectural provisions for space and equipment access. (See the Documentation Toolkit for an example.)


  • Use envelope design and passive strategies to reduce the heating and cooling loads prior to detailed design of HVAC systems. Passive strategies can reduce heating and cooling loads, giving the engineer more options, including smaller or innovative systems.


  • Load reduction requires coordinated efforts by all design members including the architect, lighting designer, interior designer, information-technology manager, and owner. 

    • Architects can choose the optimum building orientation, select the appropriate envelope system and design it to be tight, and configure programming to utilize passive strategies as much as possible. 
    • Lighting designers help by harvesting daylight, making appropriate fixture selections, minimizing lighting layouts (fewer fixtures), providing maximum controls and daylight and occupancy sensors to reduce wasted light. 
    • Interior designers are critical for selecting reflective finishes to enhance daylighting and specifying Energy Star appliances. 
    • IT specialists are important, especially in buildings with data centers, for selection of computers and data-processing equipment that reduce the power load as well as cooling. 

  • Involving facilities staff in the design process can further inform key design decisions, helping ensure successful operation and low maintenance costs.


  • Encourage your design team to brainstorm design innovations and energy-reduction strategies. This provides a communication link among team members so they can make informed decisions. 


  • More energy-efficient HVAC equipment can cost more relative to conventional equipment. However, by reducing heating and cooling loads through good passive design, the mechanical engineer can often reduce the size and cost of the system. Reduced system size can save money through:

    • smaller chillers or boilers;
    • smaller fans, used less frequently;
    • smaller pumps and auxiliary systems;
    • smaller ducts;
    • and less square footage devoted to mechanical systems.

  • Review case studies of similar energy-efficient buildings in the same climate to provide helpful hints for selecting energy-efficiency measures. For example, a building in a heating-dominated climate can often benefit from natural ventilation and free cooling during shoulder seasons. (See Resources for leading industry journals showcasing success stories around the country and internationally.)


  • The relationship between first costs and operating costs can be complex. For example, more efficient windows will be more expensive, but could reduce the size and cost of mechanical equipment. A more efficient HVAC system may be more expensive, but will reduce operating costs. Play around with variables and different strategies to get the right fit for the building and the owner’s goals as stated in the OPR.


  • Option 1: Whole Building Energy Simulation


  • Review and confirm compliance with the mandatory requirements of all the relevant sections of ASHRAE 90.1-2007


  • Trust your project’s energy modeling task to a mechanical firm with a proven track record in using models as design tools, and experience with your building type.


  • Contract an energy modeling team for the project. These services may be provided by the mechanical engineering firm on the design team or by an outside consultant. Software used for detailed energy use analysis and submitted for final LEED certification must be accepted by the regulatory authority with jurisdiction, and must comply with paragraph G2.2 of ASHRAE Standard 90.1-2007. Refer to Resources for a list of Department of Energy approved energy-analysis software that may be used for LEED projects.


  • Design team members, including the architect and mechanical engineer at a minimum, need to work together to identify a percentage improvement goal for project energy use over the ASHRAE 90.1-2007-compliant baseline model. The percentage should be at least 10% to meet the prerequisite. 


  • Plan on initiating energy modeling during the design process, and use it to inform your design—preferably executing several iterations of the design as you improve the modeled energy performance. 


  • Ask the modeling consultant to develop an annual energy-use breakdown—in order to pick the “fattest” targets for energy reduction. A typical energy-use breakdown required for LEED submission and ASHRAE protocol includes: 

    • lighting;
    • space heating;
    • space cooling;
    • domestic hot water;
    • additional installed heat recovery, refrigeration, or heat-rejection systems;
    • ventilation fans and auxiliary pumps;
    • and equipment and plug loads. 

  • Identify critical areas in which to reduce loads. For example, in a data center, the plug loads are the largest energy load. Small changes in lighting density might bring down the energy use but represent only a small fraction of annual energy use. 


  • Don't forget that LEED (following ASHRAE) uses energy cost and not straight energy when it compares your design to a base case. That's important because you might choose to use a system that burns natural gas instead of electricity and come out with a lower cost, even though the on-site energy usage in kBtus or kWhs is higher. Generally you have to specify the same fuel in your design case and in the base case, however, so you can't simply switch fuels to show a cost savings


  • Explore and analyze design alternatives for energy use analyses to compare the cost-effectiveness of your design choices. For example, do you get better overall performance from a better window or from adding a PV panel? Will demand-control ventilation outperform increased ceiling insulation?


  • Simple, comparative energy analyses of conceptual design forms are useful ways to utilize an energy model at this stage. Sample scenarios include varying the area of east-facing windows and looking at 35% versus 55% glazing. Each scenario can be ranked by absolute energy use to make informed decisions during the design stage. 


  • If your project is using BIM software, the model can be plugged into the energy analysis software to provide quick, real-time results and support better decisions. 


  • Model development should be carried out following the PRM from ASHRAE 90.1-2007, Appendix G, and the LEED 2009 Design and Construction Reference Guide, Table in EAc1. In case of a conflict between ASHRAE and LEED guidelines, follow LEED.


  • Projects using district energy systems have special requirements. For EAp2, the proposed building must achieve the 10% energy savings without counting the effects of the district generation system. To earn points in EAc1 you can take advantage of the district system’s efficiency, but you have to run the energy model again to claim those benefits (see EAc1 for details). 


  • While you could run the required energy model at the end of the design development phase, simply to demonstrate your prerequisite compliance, you don’t get the most value that way in terms of effort and expense. Instead, do it early in the design phase, and run several versions as you optimize your design. Running the model also gives you an opportunity to make improvements if your project finds itself below the required 10% savings threshold.


  • The baseline model is the designed building with mechanical systems specified in ASHRAE 90.1-2007, Appendix G, for the specific building type, with a window-to-wall ratio at a maximum of 40%, and minimally code-compliant specifications for the envelope, lighting, and mechanical components. It can be developed as soon as preliminary drawings are completed. The baseline is compared to the design case to provide a percentage of reduction in annual energy use. To avoid any bias from orientation, you need to run the baseline model in each of the four primary directions, and the average serves as your final baseline figure. 


  • The design-case is modeled using the schematic design, orientation, and proposed window-to-wall ratio—¬the model will return design-case annual energy costs. Earn points by demonstrating percentage reductions in annual energy costs from the design to the baseline case. EAp2 is achieved if the design case is 10% lower than the baseline in new construction (or 5% less in existing building renovations). 


  • Provide as much project and design detail to the modeler as possible. A checklist is typically developed by the energy modeler, listing all the construction details of the walls, roof, slabs, windows, mechanical systems, equipment efficiencies, occupancy load, and schedule of operations. Any additional relevant information or design changes should be brought to the modeler’s attention as soon as possible. The more realistic the energy model is, the more accurate the energy use figure, leading to better help with your design.


  • Invite energy modelers to project meetings. An experienced modeler can often assist in decision-making during design meetings, even without running complete models each time. 


  • All known plug loads must be included in the model. The baseline and design-case models assume identical plug loads. If your project is deliberately attempting to reduce plug loads, demonstrate this by following the exceptional calculation method (ECM), as described in ASHRAE 90.1-2007, G2.5. Incorporate these results in the model to determine energy savings. 


  • For items outside the owner’s control—like lighting layout, fans and pumps—the parameters for the design and baseline models must be identical.


  • It can take anywhere from a few days to a few weeks to generate meaningful energy modeling results. Schedule the due dates for modeling results so that they can inform your design process.


  • Review the rate structure from your electrical utility. The format can inform your team of the measures likely to be most effective in reducing energy costs, especially as they vary over season, peak load, and additional charges beyond minimum energy use.


  • Performing a cost-benefit analysis in conjunction with energy modeling can determine payback times for all the energy strategies, helping the iterative design process.


  • Using energy modeling only to check compliance after the design stage wastes much of the value of the service, and thus your investment.


  • Option 2: Prescriptive—ASHRAE Advanced Energy Design Guides 


  • The architect and mechanical engineer should carefully read the applicable ASHRAE Advanced Energy Design Guide for office, warehouse, or retail projects, as applicable. 


  • Keep the owner abreast of the design decisions dictated by the standard. Fill in the team-developed checklist, within the climate zone table’s prescribed requirements, with appropriate envelope improvements, system efficiencies, and a configuration that meets the standard requirements. 


  • As a prescriptive path, this option relies heavily on following the requirement checklist, which is used throughout the design process to track progress. To assist design development, provide all critical team members—not limited to the architect, mechanical and electrical engineers, and lighting designer—with a checklist highlighting their appointed tasks.


  • The architect, mechanical engineer, and lighting designer need to discuss each requirement and its design ramifications. Hold these meetings every six to eight weeks to discuss progress and make sure all requirements are being met.


  • Confirm that your project team is comfortable with following all the prescribed requirements. If not, switch to Option 1: Whole Building Energy Simulation. 


  • The LEED Online credit form does not specify how to document each prescriptive requirement because they are so different for each project; it only requires a signed confirmation by the MEP for meeting AEDG requirements. You still have to provide documentation. Submit your checklist of requirements, and supporting information for each item, through LEED Online to make your case. If your project fails to meet even one requirement, it will fail to earn the prerequisite, thus jeopardizing LEED certification.  


  • Although energy modeling consultant costs are avoided by this option, additional staff time will be required to document and track compliance status, as compared with conventional projects.


  • Energy efficiency measures prescribed by the guide can be perceived as additional costs in comparison with conventional projects. However, they are easy to implement and are cost-effective pn the whole.


  • Option 3: Prescriptive Compliance Path—Advanced Buildings Core Performance Guide 


  • Become familiar with the Core Performance Guide early in the design phase to know the multiple requirements and all requisite documents.


  • Note that the guide demands additional time, attention, and integrated process from the design team as compared to conventional projects. It’s not just a list of prescriptive requirements, but a prescribed process for achieving energy efficiency goals. LEED Online documentation requires proof of all steps outlined in Sections 1 and 2, including three conceptual design options and meeting minutes. The project manager, architect, and mechanical engineer should read the complete Core Performance Guide carefully to know beforehand the prescriptive requirements in Sections 1 and 2. 


  • The project manager must take responsibility for ensuring that the requirement checklist is on track.


  • For Section 3, the design team needs to identify three or more of the listed strategies as possible targets for the project. 


  • Create a checklist of requirements and assign a responsible party to each item. 


  • The Core Performance Guide requires an integrated design contributed by the architect, mechanical and electrical engineers, and lighting designer. The project manager must take responsibility for shepherding and documenting the collaborative process to demonstrate compliance. 


  • A long documentation list can be overwhelming for your team, so create a detailed checklist with tasks delegated to individual team members, allowing each member to focus on assigned tasks. The checklist can function as a status tracking document and, finally, the deliverable for LEED Online.

Design Development

Expand All

  • The architect and engineer, and other project team members, continue to develop a high-performance building envelope with efficient mechanical and lighting systems. 


  • Constant communication and feedback among project team members, owner, and if possible, operational staff, during design development can minimize construction as well as operational costs and keep your project on schedule. 


  • If you change or go through value-engineering on any specifications, such as the solar-heat gain coefficient of glazing, for example, be aware of impacts on mechanical system sizing. Making changes like this might not pay off as much as it first appears.


  • Consider using building information modeling (BIM) tools to keep design decisions up to date and well documented for all team members.


  • Schedule delays can be avoided if all team members share their ideas and update documents during the design development process. 


  • Option 1: Whole Building Energy Simulation


  • The modeler completes the energy analysis of the selected design and system and offers alternative scenarios for discussion. The modeler presents the energy cost reduction results to the team, identifying the LEED threshold achieved.


  • It’s helpful for the energy modeling report to include a simple payback analysis to assist the owner in making an informed decision on the operational savings of recommended features. 


  • The architect and HVAC engineer should agree on the design, working with the cost estimator and owner.


  • Demonstrating reductions in non-regulated loads requires a rigorous definition of the baseline case. The loads must be totally equivalent, in terms of functionality, to the proposed design case. For example, reducing the number of computers in the building does not qualify as a legitimate reduction in non-regulated loads. However, the substitution of laptops for desktop computers, and utilization of flat-screen displays instead of CRTs for the same number of computers, may qualify as a reduction.


  • Residential and hospitality projects that use low-flow showers, lavatories, and kitchen sinks (contributing to WEp1) benefit from lower energy use due to reduced overall demand for hot water. However, for energy-savings calculations, these are considered process loads that must be modeled as identical in baseline and design cases, or you have the choice of demonstrating the savings with ECM for process loads. 


  • Perform daylight calculations in conjunction with energy modeling to balance the potentially competing goals of more daylight versus higher solar-heat gain resulting in high cooling loads. 


  • If your project is pursuing renewable energy, the energy generated is accounted for by using the PRM. These results provide information about whether the energy is contributing to EAc2: Onsite Renewable Energy. 


  • A cost-benefit analysis can help the owner understand the return on investment of big-ticket, energy-conserving equipment that lowers operating energy bills with a quick payback. 


  • Complete at least half of the energy modeling effort by the end of the design development stage. Help the design team to finalize strategy through intensive, early efforts in energy modeling. Once the team has a design direction, the modeler can develop a second model during the construction documents phase for final confirmation. 


  • If pursuing ECM for non-regulated loads, calculate energy saving for each measure separately if you are, for example, installing an energy-efficient elevator instead of a typical one so that the reduction would contribute to total building energy savings. Calculate the anticipated energy use of the typical elevator in kBTUs or kWh. Using the same occupancy load, calculate the energy use of the efficient elevator. Incorporate the savings into design case energy use within the PRM. Refer to the ECM strategy for detailed calculation guidelines. 


  • Option 2: Prescriptive Compliance Path—ASHRAE Advanced Energy Design Guides 


  • Ensure that all prescriptive requirements are incorporated into the design by the end of the design development stage.


  • Revisit the Advanced Energy Design Guides (AEDG) checklist to ensure that the design meets the prescriptive requirements.


  • Option 3: Prescriptive Compliance Path—Advanced Buildings Core Performance Guide


  • The mechanical engineer, lighting consultant, and architect revisit the checklist for an update on the requirements and how they are being integrated into the design. All prescriptive requirements should be specifically incorporated into the design by the end of the design development phase. 


  • The mechanical engineer and architect track the status of each requirement.


  • While the LEED Online credit form does not require detailed documentation for each Core Performance Guide requirement, it is important that each item be documented as required and reviewed by the rest of the team to confirm compliance, especially as further documentation may be requested by during review. Your design team should work with the owner to identify cost-effective strategies from Section 3 that can be pursued for the project. 

Construction Documents

Expand All

  • Construction documents clearly detail the architectural and mechanical systems that address energy-efficiency strategies.  


  • Confirm that specifications and the bid package integrate all equipment and activities associated with the project. 


  • If the project goes through value engineering, refer to the OPR and BOD to ensure that no key comfort, health, productivity, daylight, or life-cycle cost concerns are sacrificed.


  • During the budget estimating phase, the project team may decide to remove some energy-saving strategies that have been identified as high-cost items during the value-engineering process. However, it is very important to help the project team understand that these so-called add-ons are actually integral to the building’s market value and the owner’s goals. 


  • Removing an atrium, for example, due to high cost may provide additional saleable floor area, but may also reduce daylight penetration while increasing the lighting and conditioning loads.  


  • Option 1: Whole Building Energy Simulation


  • Although this prerequisite is a design-phase submittal, it may make sense to submit it, along with EAc1, after construction. Your project could undergo changes during construction that might compel a new run of the energy model to obtain the latest energy-saving information. Waiting until the completion of construction ensures that the actual designed project is reflected in your energy model.


  • Create a final energy model based completely on construction document drawings—to confirm actual energy savings as compared to ASHRAE 90.1-2007 requirements. An energy model based on the construction documents phase will provide realistic energy-cost savings and corresponding LEED points likely to be earned. 


  • Make sure the results fit the LEED Online credit form requirements. For example, the unmet load hours have to be less than 300 and process loads will raise a red flag if they’re not approximately 25%. If any of the results are off mark, take time to redo the model. Time spent in design saves more later on in the LEED review process. 


  • Option 2: Prescriptive Compliance Path—ASHRAE Advanced Energy Design Guides


  • Finalize all design decisions and confirm that you’ve met all of the prescriptive requirements. Your team must document the checklist with relevant project drawings, including wall sections, specifications, and the MEP drawing layout.


  • Value engineering and other factors can result in design changes that eliminate certain energy features relevant to the prerequisite. As this compliance path is prescriptive, your project cannot afford to drop even one prescribed item.


  • Option 3: Prescriptive Compliance Path—Advanced Buildings Core Performance Guide


  • Finalize all design decisions and confirm that you’ve met all of the prescriptive requirements. Your team must document the checklist with relevant project drawings, including wall sections, specifications, and the MEP drawing layout.


  • Value engineering and other factors can result in design changes that eliminate certain energy features relevant to the credit. As this compliance path is prescriptive, your project cannot afford to drop even one listed item. Although perceived as high-cost, prescriptive requirements lower energy costs during operation and provide a simple payback structure. 

Construction

Expand All

  • The architect and mechanical engineer review the shop drawings to confirm the installation of the selected systems. 


  • The commissioning agent and the contractor conduct functional testing of all mechanical equipment in accordance with EAp1: Fundamental Commissioning and EAc3: Enhanced Commissioning. 


  • Find your Energy Star rating with EPA’s Target Finder tool if your building type is in the database. Input your project location, size, and number of occupants, computers, and kitchen appliances. The target may be a percentage energy-use reduction compared to a code-compliant building, or “anticipated energy use” data from energy model results. Add information about your fuel use and rate, then click to “View Results.” Your Target Finder score should be documented at LEED Online.


  • Plan for frequent site visits by the mechanical designer and architect during construction and installation to make sure construction meets the design intent and specifications. 


  • Emphasize team interaction and construction involvement when defining the project scope with key design team members. Contractor and designer meetings can help ensure correct construction practices and avoid high change-order costs for the owner. 


  • Subcontractors may attempt to add a premium during the bidding process for any unusual or unknown materials or practices, so inform your construction bidders of any atypical design systems at the pre-bid meeting.


  • Option 1: Whole Building Energy Simulation


  • The energy modeler ensures that any final design changes have been incorporated into the updated model.


  • Upon finalizing of the design, the responsible party or energy modeler completes the LEED Online submittal with building design inputs and a PRM result energy summary. 


  • Although EAp2 is a design phase submittals, it may make sense to submit it (along with EAc1) after construction. Your project could undergo changes during construction that might require a new run of the energy model. Waiting until the completion of construction ensures that your actual designed project is reflected. On the other hand, it gives you less opportunity to respond to questions that might come up during a LEED review. 


  • Include supporting documents like equipment cut sheets, specifications and equipment schedules to demonstrate all energy efficiency measures claimed in the building. 


  • It common for the LEED reviewers to make requests for more information. Go along with the process—it doesn’t mean that you’ve lost the credit. Provide as much information for LEED Online submittal as requested and possible. 


  • Option 2: Prescriptive Compliance Path—ASHRAE Advanced Energy Design Guides (AEDG)


  • The design team completes the LEED Online documentation, signing off on compliance with the applicable AEDG, and writing the narrative report on the design approach and key highlights.


  • During LEED submission, the project team needs to make an extra effort to support the prerequisite with the completed checklist and the required documents. Although the LEED rating system does not list detailed documentation, it is best practice to send in supporting documents for the prescriptive requirements from the AEDG. The supporting documents should include relevant narratives, wall sections, mechanical drawings, and calculations. 


  • Although the LEED Online sign-off does not include a checklist of AEDG requirements, it assumes that the team member is confirming compliance with all detailed requirements of the guide. 


  • Option 3: Prescriptive Compliance Path—Advanced Building Core Performance Guide


  • The design team completes the LEED Online credit form, signing off on compliance with the Core Performance Guide, and writing the narrative report on the design approach and key highlights.


  • During LEED submission, your project team needs to make an extra effort to support the prerequisite with the completed checklist and the required documents. Although not every requirement may be mentioned in the LEED documentation, the supporting documents need to cover all requirements with narratives, wall sections, mechanical drawings, and calculations. 


  • Many of this option’s compliance documents are common to other LEED credits or design documents, thus reducing duplicated efforts. 

Operations & Maintenance

Expand All

  • Develop an operations manual with input from the design team in collaboration with facility management and commissioning agent if pursuing EAc3: Enhanced Commissioning. 


  • The benefit of designing for energy efficiency is realized only during operations and maintenance. Record energy use to confirm that your project is saving energy as anticipated. If you are not pursuing EAc5: Measurement and Verification, you can implement tracking procedures such as reviewing monthly energy bills or on-the-spot metering.


  • Some energy efficiency features may require special training for operations and maintenance personnel. For example, cogeneration and building automation systems require commissioning and operator training. Consider employing a trained professional to aid in creating operation manuals for specialty items. 


  • Energy-efficiency measures with a higher first cost often provide large savings in energy use and operational energy bills. These credit requirements are directly tied to the benefits of efficient, low-cost operations.

  • USGBC

    Excerpted from LEED 2009 for New Construction and Major Renovations

    EA Prerequisite 2: Minimum energy performance

    Required

    Intent

    To establish the minimum level of energy efficiency for the proposed building and systems to reduce environmental and economic impacts associated with excessive energy use.

    Requirements

    Projects that registered on or after April 8, 2016 must demonstrate an 18% improvement for new buildings, or a 14% improvement for major renovations to existing buildings.
    Option 1. Whole building energy simulation

    Demonstrate a 10% improvement in the proposed building performance rating for new buildings, or a 5% improvement in the proposed building performance rating for major renovations to existing buildings, compared with the baseline building performanceBaseline building performance is the annual energy cost for a building design, used as a baseline for comparison with above-standard design. rating.

    Calculate the baseline building performance rating according to the building performance rating method in Appendix G of ANSI/ASHRAE/IESNA Standard 90.1-2007 (with errata but without addenda1) using a computer simulation model for the whole building project. Projects outside the U.S. may use a USGBC approved equivalent standard2.

    Appendix G of Standard 90.1-2007 requires that the energy analysis done for the building performance rating method include all energy costs associated with the building project. To achieve points using this credit, the proposed design must meet the following criteria:

    • Comply with the mandatory provisions (Sections 5.4, 6.4, 7.4, 8.4, 9.4 and 10.4) in Standard 90.1-2007 (with errata but without addenda1) or USGBC approved equivalent.
    • Inclusion of all the energy costs within and associated with the building project.
    • Compare against a baseline building that complies with Appendix G of Standard 90.1-2007 (with errata but without addenda1) or USGBC approved equivalent. The default process energy cost is 25% of the total energy cost for the baseline building. If the building’s process energy cost is less than 25% of the baseline building energy cost, the LEED submittal must include documentation substantiating that process energy inputs are appropriate.

    For the purpose of this analysis, process energy is considered to include, but is not limited to, office and general miscellaneous equipment, computers, elevators and escalators,kitchen cooking and refrigeration, laundry washing and drying, lighting exempt from the lighting power allowance (e.g., lighting integral to medical equipment) and other (e.g., waterfall pumps).

    Regulated (non-process) energy includes lighting (for the interior, parking garage, surface parking, façade, or building grounds, etc. except as noted above), heating, ventilation and air conditioning (HVAC) (for space heating, space cooling, fans, pumps, toilet exhaust, parking garage ventilation, kitchen hood exhaust, etc.), and service water heating for domestic or space heating purposes.

    Process loads must be identical for both the baseline building performance rating and the proposed building performance rating. However, project teams may follow the exceptional calculation method (ANSI/ASHRAE/IESNA Standard 90.1-2007 G2.5) or USGBC approved equivalent to document measures that reduce process loads. Documentation of process load energy savings must include a list of the assumptions made for both the base and the proposed design, and theoretical or empirical information supporting these assumptions.

    Projects in California may use Title 24-2005, Part 6 in place of ANSI/ASHRAE/IESNA Standard 90.1-2007 for Option 1.

    OR

    Option 2 is not an eligible compliance option for projects that registered on or after April 8, 2016.
    Option 2. Prescriptive compliance path: ASHRAE Advanced Energy Design Guide

    Comply with the prescriptive measures of the ASHRAE Advanced Energy Design Guide appropriate to the project scope, outlined below. Project teams must comply with all applicable criteria as established in the Advanced Energy Design Guide for the climate zoneOne of five climatically distinct areas, defined by long-term weather conditions which affect the heating and cooling loads in buildings. The zones were determined according to the 45-year average (1931-1975) of the annual heating and cooling degree-days (base 65 degrees Fahrenheit). An individual building was assigned to a climate zone according to the 45-year average annual degree-days for its National Oceanic and Atmospheric Administration (NOAA) Division. in which the building is located. Projects outside the U.S. may use ASHRAE/ASHRAE/IESNA Standard 90.1-2007 Appendices B and D to determine the appropriate climate zone.

    Path 1. ASHRAE Advanced Energy Design Guide for Small Office Buildings 2004

    The building must meet the following requirements:

    • Less than 20,000 square feet (1,800 square meters).
    • Office occupancy.
    Path 2. ASHRAE Advanced Energy Design Guide for Small Retail Buildings 2006

    The building must meet the following requirements:

    • Less than 20,000 square feet (1,800 square meters).
    • Retail occupancy.
    Path 3. ASHRAE Advanced Energy Design Guide for Small Warehouses and Self Storage Buildings 2008

    The building must meet the following requirements:

    • Less than 50,000 square feet (4,600 square meters).
    • Warehouse or self-storage occupancy.

    OR

    Option 3 is not an eligible compliance option for projects that registered on or after April 8, 2016.
    Option 3. Prescriptive compliance path: Advanced Buildings™ Core Performance™ Guide

    Comply with the prescriptive measures identified in the Advanced Buildings™ Core Performance™ Guide developed by the New Buildings Institute. The building must meet the following requirements:

    • Less than 100,000 square feet (9,300 square meters).
    • Comply with Section 1: Design Process Strategies, and Section 2: Core Performance Requirements.
    • Health care, warehouse and laboratory projects are ineligible for this path.

    Projects outside the U.S. may use ASHRAE/ASHRAE/IESNA Standard 90.1-2007 Appendices B and D to determine the appropriate climate zone.

    OR

    Option 4. Brazil compliance path: PBE Edifica

    Projects in Brazil that are certified at the “A” level under the Regulation for Energy Efficiency Labeling (PBE Edifica) program for all attributes (Envelope, Lighting, HVAC) achieve this prerequisite. The following building types cannot achieve this prerequisite using this option: Healthcare, Data Centers, Manufacturing Facilities, Warehouses, and Laboratories.

    1Project teams wishing to use ASHRAE approved addenda for the purposes of this prerequisite may do so at their discretion. Addenda must be applied consistently across all LEED credits.

    2 Projects outside the U.S. may use an alternative standard to ANSI/ASHRAE/IESNA Standard 90.1-2007 if it is approved by USGBC as an equivalent standard using the process identified in the LEED 2009 Green Building Design and Construction Global ACP Reference Guide Supplement.

    Pilot ACPs Available

    The following pilot alternative compliance path is available for this prerequisite. See the pilot credit library for more information.

    EApc95: Alternative Energy Performance Metric ACP

    Potential Technologies & Strategies

    Design the building envelope and systems to meet baseline requirements. Use a computer simulation model to assess the energy performance and identify the most cost-effective energy efficiency measures. Quantify energy performance compared with a baseline building.

    If local code has demonstrated quantitative and textual equivalence following, at a minimum, the U.S. Department of Energy (DOE) standard process for commercial energy code determination, then the results of that analysis may be used to correlate local code performance with ANSI/ASHRAE/IESNA Standard 90.1-2007. Details on the DOE process for commercial energy code determination can be found at http://www.energycodes.gov/implement/
    determinations_com.stm.

    FOOTNOTES

    1 Project teams wishing to use ASHRAE approved addenda for the purposes of this prerequisite may do so at their discretion. Addenda must be applied consistently across all LEED credits.

    2 Projects outside the U.S. may use an alternative standard to ANSI/ASHRAE/IESNA Standard 90.1‐2007 if it is approved by USGBC as an equivalent standard using the process located at www.usgbc.org/leedisglobal

Organizations

Database of State Incentives for Renewables and Efficiency (DSIRE)

This database shows state-by-state incentives for energy efficiency, renewable energy, and other green building measures. Included in this database are incentives on demand control ventilation, ERVs, and HRVs.


New York State Energy Research and Development Authority (NYSERDA)

Useful web resource with information on local/regional incentives for energy-efficiency programs.


American Council for an Energy-Efficient Economy

ACEEE is a nonprofit organization dedicated to advancing energy efficiency through technical and policy assessments; advising policymakers and program managers; collaborating with businesses, public interest groups, and other organizations; and providing education and outreach through conferences, workshops, and publications. 


New Buildings Institute

The New Buildings Institute is a nonprofit, public-benefits corporation dedicated to making buildings better for people and the environment. Its mission is to promote energy efficiency in buildings through technology research, guidelines, and codes.


U.S. Department of Energy, Building Energy Codes Program

The Building Energy Codes program provides comprehensive resources for states and code users, including news, compliance software, code comparisons, and the Status of State Energy Codes database. The database includes state energy contacts, code status, code history, DOE grants awarded, and construction data. The program is also updating the COMcheck-EZ compliance tool to include ANSI/ASHRAE/IESNA 90.1–2007. This compliance tool includes the prescriptive path and trade-off compliance methods. The software generates appropriate compliance forms as well. 


Rensselaer Polytechnic Institute: Daylighting Resources

Research center at RPI provides access to a wide range of  daylighting resources, case studies, design tools, reports, publications and more.


IBPSA

International association of energy modelers with various national and local chapters. 


Architecture 2030

Non-profit organization aiming at design community to increase collaboration for designing energy efficient buildings.


Low Impact Hydropower Institute

The Low Impact Hydropower Institute is a non-profit organization and certification body that establishes criteria against which to judge the environmental impacts of hydropower projects in the United States.


U.S. Department of Energy Building Technologies Program

The Building Technologies Program (BTP) provides resources for commercial and residential building components, energy modeling tools, building energy codes, and appliance standards including the Buildings Energy Data Book, High Performance Buildings Database and Software Tools Directory.

Web Tools

Energy Analysis Tools

This website discusses the step-by-step process for energy modeling.


Advanced Buildings Technologies and Practices

This online resource, supported by Natural Resources Canada, presents energy-efficient technologies, strategies for commercial buildings, and pertinent case studies.


U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

This website is a comprehensive resource for U.S. Department of Energy information on energy efficiency and renewable energy and provides access to energy links and downloadable documents. 


U.S. EPA, Combined Heat and Power Partnership

Information on cogenerationThe simultaneous production of electric and thermal energy in on-site, distributed energy systems; typically, waste heat from the electricity generation process is recovered and used to heat, cool, or dehumidify building space. Neither generation of electricity without use of the byproduct heat, nor waste-heat recovery from processes other than electricity generation is included in the definition of cogeneration., also called combined heat and power, is available from EPA through the CHPCombined heat and power (CHP), or cogeneration, generates both electrical power and thermal energy from a single fuel source. Partnership. The CHP Partnership is a voluntary program seeking to reduce the environmental impact of power generation by promoting the use of CHP. The Partnership works closely with energy users, the CHP industry, state and local governments, and other clean energy stakeholders to facilitate the development of new projects and to promote their environmental and economic benefits. 


Advanced Energy Design Guides

Free download of AHSRAE energy savings guide, use for Option 2.


Lawrence Berkeley Lab: Building Technologies Department

Research warehouse for strategies and case studies of energy efficiency in buildings.


Efficient Windows Collaborative

An online window selection tool with performance characteristics.


Whole Building Design Guide (WBDG)

This website lays out design process for developing an energy efficient building.


AIA Sustainability 2030 Toolkit

This website discusses ways to improve design for lower energy demand as they relate to the AIA 2030 challenge.


Windows for High-Performance Commercial Buildings

This website includes discussion of design issues, materials and assemblies, window design decisions and case studies. 


California Integrated Waste Management Board: Environmental and Economic Assessment Tools

This site lists multiple web-based and downloadable tools that can be used for energy analyses.


DEER: Database for Energy Efficient Resource

This database is maintainted by the California Energy Commission and lists resources related to energy use and efficiency. 


Energy Design Resources - CA

Energy design tools are available to be used for free online or available to download.


Building Materials Property Table

This website lists performance characteristics for various envelope materials. 


One Building

This is an online forum of discussion for energy efficiency, computer model software users.


EPA’s Target Finder

Target Finder is a goal-setting tool that informs your design team about their project’s energy performance as compared to a national database of projects compiled by the EPA.


Building Energy Software Tools Directory

This directory provides information on 406 building software tools for evaluating energy efficiency, renewable energy, and sustainability in buildings.


EnergyPlus Format Weather Data Resources

Weather data for more than 2100 locations are available in EnergyPlus weather format.


DOE-2 Format Weather Data Resources

Weather data for U.S. and Non-U.S. locations in BIN format.


BEMbook – Building Energy Modeling Book

A web-based, free content project by IBPSA-USA to develop an online compendium of the domain of Building Energy Modeling (BEM). The intention is to delineate a cohesive body of knowledge for building energy modeling.

Technical Guides

Advanced Buildings Core Performance Guide

A guide for achieving energy efficiency in new commercial buildings, referenced in the LEED energy credits.


ENERGY STAR Building Upgrade Manual

This manual is a strategic guide for planning and implementing energy-saving building upgrades. It provides general methods for reviewing and adjusting system control settings, plus procedures for testing and correcting calibration and operation of system components such as sensors, actuators, and controlled devices.


Treatment of District or Campus Thermal Energy in LEED V2 and LEED 2009 – Design & Construction

This document is USGBC’s second (v2.0) major release of guidance for district or campus thermal energy in LEED, and is a unified set of guidance comprising the following an update to the original Version 1.0 guidance released May 2008 for LEED v2.x and the initial release of formal guidance for LEED v2009.


COMNET Commercial Buildings Energy Modeling Guidelines and Procedures

This manual offers guidance to building energy modelers, ensuring technically rigorous and credible assessment of energy performance of commercial and multifamily residential buildings. It provides a streamlined process that can be used with various existing modeling software and systems, across a range of programs.


2009 ASHRAE Handbook of Fundamentals, Chapter 19

Chapter 19 is titled, “Energy Estimating and Modeling Methods”. The chapter discusses methods for estimating energy use for two purposes: modeling for building and HVAC system design and associated design optimization (forward modeling), and modeling energy use of existing buildings for establishing baselines and calculating retrofit savings (data-driven modeling).


Treatment of Distric or Campus Thermal Energy in LEED v2 and LEED 2009 (Updated August 13, 2010)

Required reference document for DES systems in LEED energy credits.

Publications

ANSI/ASHRAE/IESNA Standard 90.1–2007 User’s Manual (ASHRAE).

ASHRAE writes standards for the purpose of establishing consensus for: 1) methods of test for use in commerce and 2) performance criteria for use as facilitators with which to guide the industry.


Energy Information Administration

Energy statistics from the U.S. government.


New Buildings Institute— Advanced Lighting Guidelines: 2003 Edition

This guide includes instructional graphics and superior lighting design solutions for varying types of buildings and spaces, from private offices to big box retail stores.


Building Energy Performance News

This website offers information on energy efficiency in buildings, highlighting success stories, breakthrough technology, and policy updates.


GreenSource magazine

Bimonthly publication on case studies and new technologies for energy efficiency in commercial buildings. 


AIA Local Leaders in Sustainability: Green Incentives

AIA publication highlighting local and state green building incentives.


Federal Research and Devlopment Agenda for Net-Zero Energy, High-Performance Green Buildings

2008 guidelines and performance goals from the National Science and Technology Council.


Energy Design Resources (EDR) Simulation Guidebooks

Information about energy-efficient building practices available in EDR's Design Briefs, Design Guidelines, Case Studies, and Technology Overviews.

Software Tools

Building Energy Software Tools Directory

DOE tools for whole building analyses, including energy simulation, load calculation, renewable energy, retrofit analysis and green buildings tools.


Building and Fire Research Laboratory

This is a computer program that predicts the one-dimensional transfer of heat and moisture.


DesignBuilder and EnergyPlus

DesignBuilder is a Graphical User Interface to EnergyPlus. DesignBuilder is a complete 3-D graphical design modeling and energy use simulation program providing information on building energy consumption, CO2Carbon dioxide emissions, occupant comfort, daylighting effects, ASHRAE 90.1 and LEED compliance, and more.


Integrated Environmental Solutions – Virtual Environment Pro / Apache

IES VE Pro is an integrated computing environment encompassing a wide range of tasks in building design including model building, energy/carbon, solar, light, HVAC, climate, airflow, value/cost and egress.

Advanced Energy Design Guide Checklist

Option 2: Prescriptive Compliance Path

Use this checklist of prescriptive requirements (with sample filled out) to have an at-a-glance picture of AEDG requirements for Option 2, and how your project is meeting them.

Advanced Buildings Core Performance Guide (CPG) Checklist

Option 3

This spreadsheet lists all the requirements for meeting EAp2 – Option 3 and and EAc1 – Option 3. You can review the requirements, assign responsible parties and track status of each requirement through design and construction.

Energy Simulation Narrative

Option 1

Sometimes the energy simulation software being used to demonstrate compliance with Option 1 doesn't allow you to simulate key aspects of the design. In this situation you'll need to write a short sample narrative, as in these examples, describing the situation and how it was handled.

Equipment and Product Cut Sheets

All Options

In your supporting documentation, include spec sheets of equipment described in the Option 1 energy model or Options 2–3 prescriptive paths.

PRM Table

Option 1

This is a sample building energy performance and cost summary using the Performance Rating Method (PRM). Electricity and natural gas use should be broken down by end uses including space heating, space cooling, lights, task lights, ventilation fans, pumps, and domestic hot water, at the least.

Tariff Charges

Option 1

Option 1 calculates savings in annual energy cost, but utility prices may vary over the course of a year. This sample demonstrates how to document varying electricity tariffs.

Modeled Energy Reductions

Option 1

This graph, for an office building design, shows how five overall strategies were implemented to realize energy savings of 30% below an ASHRAE baseline. (From modeling conducted by Synergy Engineering, PLLC.)

U.S. Climate Zones

All Options

The climate zones shown on this Department of Energy map are relevant to all options for this credit.

Appendix G Fan Power Calculator

Option 1

This spreadsheet, provided here by 7group, can be used to calculate the fan volume and fan power for Appendix G models submitted for EAp2/EAc1.  Tabs are included to cover both ASHRAE 90.1-2004 and 90.1-2007 Appendix G methodologies.

LEED Online Forms: NC-2009 EA

Sample LEED Online forms for all rating systems and versions are available on the USGBC website.

Design Submittal

PencilDocumentation for this credit can be part of a Design Phase submittal.

3816 Comments

0
0
sherif el adly Egis Rail
Dec 01 2016
LEEDuser Member
25 Thumbs Up

water cooled chilller

Project Location: Saudi Arabia

Hi Marcus

The building size is mandating to model the baseline with a water cooled chiller and I will compare the baseline with the design which is using HVAC that is (air cooled chiller + ice storage efficiency 30%+ diversity).

when I compared the results of the energy model between the total baseline energy consumption and the total energy consumption of the design , I found that I achieved 12% reduction (fulfilled the prerequisite requirement).

my questions are:
1. Is it accepted to model the design with the energy of HVAC considering air cooled chillers + diversity + ice storage

2. Should I be prepared to provide any evidence or clue on this HVAC scenario

Thanks,
Sherif

1
1
0
Marcus Sheffer LEED Fellow, 7group Dec 01 2016 LEEDuser Expert 65845 Thumbs Up

1. If that is how it is designed then yes. Always model the Proposed as designed.

2. The mechanical schedules should be provided to verify that the project has been modeled as designed.

Post a Reply
0
0
Saif Abdulameer
Dec 01 2016
LEEDuser Member
14 Thumbs Up

Cooling tower fan power

Project Location: United States

Hi all,

I am modeling a cooling tower the fan meets the requirement of Appendix G, but I am not sure what is the fan power should be used for the baseline, Should I use the same as proposed model fan power? or there is a calculation for that?

Thank you,

1
2
0
Marcus Sheffer LEED Fellow, 7group Dec 01 2016 LEEDuser Expert 65845 Thumbs Up

Minimum 38.2 gpm/hp (maximum 0.0262 hp/gpm or 19.5 W/gpm) per Table 6.8.1G

2
2
0
Saif Abdulameer Dec 01 2016 LEEDuser Member 14 Thumbs Up

Thank you Marcus,

Post a Reply
0
0
sherif el adly Egis Rail
Nov 29 2016
LEEDuser Member
25 Thumbs Up

modeling with air cooled chiller

Project Location: Saudi Arabia

the building size is mandating to model the baseline with a water cooled chiller and I will compare the baseline with the design which is using HVAC that is (air cooled chiller + ice storage + diversity).

when I compared the results of the energy model between the total baseline energy consumption and the total energy consumption of the design , I found that I achieved 12% reduction (fulfilled the prerequisite requirement).

my questions are:
1. Is it accepted to model the design with the energy of HVAC considering air cooled chillers + diversity + ice storage

2. Should I be prepared to provide any evidence or clue on this HVAC scenario

Thanks,
Sherif

Post a Reply
0
0
junaid naseer
Nov 21 2016
Guest
4 Thumbs Up

LEED NCv 2009 Multi-Family Residential: Apartment

Project Location: United Arab Emirates

Hi All,

I have seen this point tackled in many comments earlier but we still have some doubts. We have a residential building of 16 floors which sits on a podium of 3 floors. Our issues are as follows:

1. Lighting Power Density
Our proposed design consists of complete lighting layout which has separate wiring for lighting including distribution board and separate power wiring to wall receptacle fixtures. We want to use space by space method by considering lighting of 12 W/m² for baseline bedroom by selecting Hotel/Motel Guest Rooms from Table 9.6.1 and12W/m² living room including kitchen as Dormitory Living Quarters.
a. Is the above approach fine as building plans are completely designed or do we need to include receptacle load as per Energy Star Multi Family High Rise Program document? (essentially what approach is agreeable by LEED)
b. Is it necessary to consider lighting irrespective of approach to only operate 2-3 hours per day or is it only for cases where LEED approach per 1712 is adopted?

2. Corridors, electrical, IT closet rooms located on typical residential floors are considered as non-residential conditioned spaces and system type selected is system 8. We also read comments from Marcus earlier which consider corridors in residential spaces as they only serve apartments.
a. Is our conservative approach understandable by selecting an efficient baseline system and hence improving baseline performance ?
b. IT closet and electrical rooms on each typical floor have normally high process load and they are located on each floor (for our case 16 floors). If above approach is considered ok, then our IT & electrical rooms will fall under system 4 due to high process load but if above approach is not ok, then what space category shall be selected for IT & electrical rooms including baseline system type and lighting?

1
1
0
Marcus Sheffer LEED Fellow, 7group Nov 22 2016 LEEDuser Expert 65845 Thumbs Up

1a. No Hotel/Motel Guest rooms cannot be used for multi-family residential buildings. 90.1 does not regulate the lighting in these buildings so you have to use the Energy Star multi-family simulation methodology.
1b. You have to use the allowable lighting schedule unless you can prove that that schedule does not apply to your situation.
2. For LEED you can do it either way. In my opinion the corridors are clearly residential as they only really serve a residential function.
2a. That could be justification for modeling it the way you suggest.
2b. Electrical closets are Electrical/Mechanical spaces. They typically do not contain much process energy loads as the "heat" from the electrical equipment is not usually included in the models. They often do not contain any separate space conditioning equipment. If they do then you might be able to justify a separate HVAC system. IT closets may contain some process loads. Again if they have separate space conditioning equipment installed then you could probably justify a separate baseline system.

Post a Reply
0
0
Victoria Watson
Nov 21 2016
LEEDuser Member
226 Thumbs Up

Circulating Fans

Project Location: United States

Hi, I have some fans In my building which operate to circulate air. They are low speed when occupied and then ramp up to full speed with Temperature goes above 80F. Should these fans be part of the HVAC or process/receptacle energy (like ceiling fans would be).

Thanks

Victoria

1
1
0
R2M Solution Srl R2M Solution Srl Nov 22 2016 LEEDuser Member 153 Thumbs Up

It seems that the system can control the indoor temperature, cannot it?
If it can control it, it's a HVAC system.

Post a Reply
0
0
Douglas Flandro Designer Cambridge Seven Associates, Inc.
Nov 16 2016
LEEDuser Member
36 Thumbs Up

AAMA ratings for U-Value vs. NFRC ratings

Project Location: United States

Our rep has given us AAMA ratings to determine the U-ValueU-value describes how well a building element conducts heat. It measures the rate of heat transfer through a building element over a given area, under standardized conditions. The greater the U-value, the less efficient the building element is as an insulator. The inverse of (1 divided by) the U-value is the R-value. of the curtain wall assemblies. LEED seems to be asking for NFRCNational Fenestration Rating Council (NFRC) is a non-profit organization that provides uniform, independent rating and labeling used to measure and compare energy performance of windows, doors, skylights, and attachment products. ratings. Do we need to insist on the NFRC ratings?

1
2
0
Douglas Flandro Designer, Cambridge Seven Associates, Inc. Nov 16 2016 LEEDuser Member 36 Thumbs Up

The rep says that the AAMA ratings are, "All there is." But they use NFRCNational Fenestration Rating Council (NFRC) is a non-profit organization that provides uniform, independent rating and labeling used to measure and compare energy performance of windows, doors, skylights, and attachment products. standards. Does this ring true with your experience?

2
2
0
Marcus Sheffer LEED Fellow, 7group Nov 17 2016 LEEDuser Expert 65845 Thumbs Up

NFRCNational Fenestration Rating Council (NFRC) is a non-profit organization that provides uniform, independent rating and labeling used to measure and compare energy performance of windows, doors, skylights, and attachment products. is mostly a residential/light commercial window standard. AAMA is more commercial. Notice the big residential window makers like Anderson and Pella are not AAMA. There is some overlap. Either thermal test would be acceptable for LEED purposes. The most important thing that project teams miss when it comes to the window performance of the Proposed is producing a reasonable value. The AAMA test would be preferable to trying to model the frames and the glazing within the modeling software as that often tends to produce U-valueU-value describes how well a building element conducts heat. It measures the rate of heat transfer through a building element over a given area, under standardized conditions. The greater the U-value, the less efficient the building element is as an insulator. The inverse of (1 divided by) the U-value is the R-value. much lower than the typical test results. If you do use the frame modeling method make sure your results are reasonable and check them against the manufacturers testing data.

Post a Reply
0
0
Jeff Riggs
Nov 15 2016
Guest
2 Thumbs Up

Air economizers in proposed and baseline

Project Location: United States

If air economizers are not required to be modeled in the baseline system due to climate zoneOne of five climatically distinct areas, defined by long-term weather conditions which affect the heating and cooling loads in buildings. The zones were determined according to the 45-year average (1931-1975) of the annual heating and cooling degree-days (base 65 degrees Fahrenheit). An individual building was assigned to a climate zone according to the 45-year average annual degree-days for its National Oceanic and Atmospheric Administration (NOAA) Division. (4a) can you model the proposed with economizers if in design and not model economizers in the baseline?

1
1
0
Cory Duggin Energy Engineer, TLC Engineering for Architecture Nov 15 2016 LEEDuser Member 135 Thumbs Up

Yes, it counts as an ECMEnergy conservation measures are installations or modifications of equipment or systems intended to reduce energy use and costs. that is something above and beyond what code requires.

Post a Reply
0
0
Kalyan Nishtala
Nov 11 2016
LEEDuser Member
237 Thumbs Up

Energy Recovery Bypass

Project Location: United States

Hi,
I am working on a building which includes DOAS units with energy recovery cores on the proposed systems. The baseline systems do not require energy recovery per ASHRAE 90.1-2007. As part of the design review comments we received, we were asked to indicate the bypass mechanism used to bypass the energy recovery medium during mild conditions. This is part of the prescriptive requirements of ASHRAE.

The proposed ERVs are core type and do not have any bypass dampers (or mechanism). Does that mean that the proposed systems do not meet the requirements of ASHRAE? I am a little confused here since the core type (RenewAire for instance) ERVs are very commonly used. Is it okay to say that there is no bypass mechanism in the physical systems and hence it hasn't been modeled as a response to the comment?

Post a Reply
0
0
Kalyan Nishtala
Nov 11 2016
LEEDuser Member
237 Thumbs Up

Energy Recovery Bypass

Project Location: United States

Hi,
I am working on a building which includes DOAS units with energy recovery cores on the proposed systems. The baseline systems do not require energy recovery per ASHRAE 90.1-2007. As part of the design review comments we received, we were asked to indicate the bypass mechanism used to bypass the energy recovery medium during mild conditions. This is part of the prescriptive requirements of ASHRAE.

The proposed ERVs are core type and do not have any bypass dampers (or mechanism). Does that mean that the proposed systems do not meet the requirements of ASHRAE? I am a little confused here since the core type (RenewAire for instance) ERVs are very commonly used. Is it okay to say that there is no bypass mechanism in the physical systems and hence it hasn't been modeled as a response to the comment?

1
2
0
Cory Duggin Energy Engineer, TLC Engineering for Architecture Nov 11 2016 LEEDuser Member 135 Thumbs Up

It is acceptable to not have a bypass mechanism because you are not required to meet the prescriptive requirements of 90.1, unless that is also your code compliance path. You just need to make sure you account for the increased fan energy from not being able to bypass the ERV. In my experience that particular product has built in fans for overcoming the added static, so the energy from those fans would be the penalty when there is no energy to recover.

2
2
0
Kalyan Nishtala Nov 11 2016 LEEDuser Member 237 Thumbs Up

Yes, the fans are sized to account for the core PD and have been modeled to account for the same.

Thanks a lot for the quick response.

Post a Reply
0
0
Nicolas Martinez Ochoa
Nov 08 2016
Guest
32 Thumbs Up

Change form

Hi,
I am working in an office building. I have completed the “minimum energy performance v2009” spreadsheet, but the project uses the v05 form. Is it possible to change the form to a newer form? I do not want to complete the 1.4 Table, as I said, I have completed the minimum energy performance v2009 calculator.
Thanks.

1
1
0
Marcus Sheffer LEED Fellow, 7group Nov 08 2016 LEEDuser Expert 65845 Thumbs Up

You can request that GBCIThe Green Building Certification Institute (GBCI) manages Leadership in Energy and Environmental Design (LEED) building certification and professional accreditation processes. It was established in 2008 with support from the U.S. Green Building Council (USGBC). change it to a newer form.

Alternatively you could complete the v05 form (since it is tied to other credits) and submit the MEPC instead of the old Table 1.4 file.

Post a Reply
0
0
Jatuwat Varodompun Dr Green Building Soultion
Nov 07 2016
LEEDuser Member
2084 Thumbs Up

ERV supply and return fans

We have grouped many conditioned zones which the OA will be supplied with central DOA and ERV system. The air from the ERV will be deliver by large fan and return by also a large fan. Can we report these fan energy as part of process energy similar to unconditioned fans?

1
1
0
Marcus Sheffer LEED Fellow, 7group Nov 07 2016 LEEDuser Expert 65845 Thumbs Up

Sounds like these fans are part of the HVAC system serving conditioned spaces. If so they are not process.

Post a Reply
0
0
Vassil Vassilev Manager Termoservice OOD
Nov 07 2016
LEEDuser Member
367 Thumbs Up

Fan Power and Fan Power Adjustment (FPA)

Project Location: Bulgaria

Greetings,
In the project we are modeling, the following issues are still not quite clear for us and we'd appreciate any advice on the matter.
Baseline system is 8.
The Proposed AHU1.Air-handling units (AHUs) are mechanical indirect heating, ventilating, or air-conditioning systems in which the air is treated or handled by equipment located outside the rooms served, usually at a central location, and conveyed to and from the rooms by a fan and a system of distributing ducts. (NEEB, 1997 edition) 2.A type of heating and/or cooling distribution equipment that channels warm or cool air to different parts of a building. This process of channeling the conditioned air often involves drawing air over heating or cooling coils and forcing it from a central location through ducts or air-handling units. Air-handling units are hidden in the walls or ceilings, where they use steam or hot water to heat, or chilled water to cool the air inside the ductwork. systems are with fully ducted supply, return and exhaust parts. Their AHUs are provided with filter F7 (MERV13), rotary heat recovery device (HRD) and sound attenuator on the supply side.
The questions are:
1. By applying the PD adjustments as per table 6.5.3.1.B, should we take the fully ducted PDA only once or we should apply it twice - for supply and return. Also regarding HRD, should we apply the PDA for the supply and for the return side or only once.
2. Baseline system 8 has a fan power related to the PFBs. How to estimated these powers.
All comments and advices are highly appreciated.
Thanks

1
6
0
Marcus Sheffer LEED Fellow, 7group Nov 07 2016 LEEDuser Expert 65845 Thumbs Up

1. The PDA is for fully ducted return so it only counts once.
2. See G3.1.3.14

So it sounds like you can claim a PDA for fully ducted return (0.5), MERVMinimum Efficiency Reporting Value (MERV) rating is an American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) measurement scale which rates the effectiveness of air filters. 13 filters (0.9), and sound attenuation (0.15). Keep in mind that you can only claim the fully ducted return PDA if 100% of the returns are ducted. If you have one transfer grill or plenum return then you can't claim it (see the Under's Manual). Also you can only claim a PDA for heat recovery if it is required in the Baseline according to G3.1.2.10. It does not matter if there is heat recovery in the Proposed system.

2
6
0
Vassil Vassilev Manager, Termoservice OOD Nov 08 2016 LEEDuser Member 367 Thumbs Up

Marcus, thanks a lot for the reply.
Could you please clear also what is understood by airflow control devices and in what situationthey it could be applied.
Is this closing or adjusting dampers on the return side and in which place.
I'm sorry, but without some more explanation, I could've missed or unproperly apply them.
Thanks.

3
6
0
Marcus Sheffer LEED Fellow, 7group Nov 08 2016 LEEDuser Expert 65845 Thumbs Up

That refers to situations only where the airflow is modulated to maintain relative negative or positive space pressure (e.g. lab, operating room). There may be a few other applications but this is rarely installed in most standard HVAC systems. The User's Manual has a good discussion of this I think. This one is often incorrectly applied.

4
6
0
Vassil Vassilev Manager, Termoservice OOD Nov 08 2016 LEEDuser Member 367 Thumbs Up

Thanks a lot Marcus,
I'd like to ask again about System 8 and the fan power assigned to fan powered VAVVariable Air Volume (VAV) is an HVAC conservation feature that supplies varying quantities of conditioned (heated or cooled) air to different parts of a building according to the heating and cooling needs of those specific areas. boxes - how to estimate it.
Thanks.

5
6
0
Marcus Sheffer LEED Fellow, 7group Nov 08 2016 LEEDuser Expert 65845 Thumbs Up

ASHRAE 90.1-2007 Appendix G3.1.3.14 tells you how to model these boxes in the Baseline for a System #8.

6
6
0
Vassil Vassilev Manager, Termoservice OOD Nov 08 2016 LEEDuser Member 367 Thumbs Up

Thanks Marcus,
Sorry for didn't check about it.
I do applogize

Post a Reply
0
0
Jatuwat Varodompun Dr Green Building Soultion
Nov 06 2016
LEEDuser Member
2084 Thumbs Up

NFRC Rated Fenestration

For the proposed model, can we refer to table A8.2 for U-factor of the window but refer SHGCSolar heat gain coefficient (SHGC): The fraction of solar gain admitted through a window, expressed as a number between 0 and 1. and VLT to the manufacturing data (tested based with NFRCNational Fenestration Rating Council (NFRC) is a non-profit organization that provides uniform, independent rating and labeling used to measure and compare energy performance of windows, doors, skylights, and attachment products. standard)? In table A8.2, U-factor, SHGC, and VLT are provided for unlabeled glass. However, we would like to refer only U-factor since the on-site customized frame are complicated.

1
7
0
Marcus Sheffer LEED Fellow, 7group Nov 06 2016 LEEDuser Expert 65845 Thumbs Up

I think you could as it sounds conservative. The U-values in A8.2 are likely much higher than your windows will be. Make sure to explain your rational to the reviewer.

2
7
0
Jatuwat Varodompun Dr, Green Building Soultion Nov 07 2016 LEEDuser Member 2084 Thumbs Up

Thanks Marcus

I am not quite know the NFRCNational Fenestration Rating Council (NFRC) is a non-profit organization that provides uniform, independent rating and labeling used to measure and compare energy performance of windows, doors, skylights, and attachment products. standard. After I read it, it sound like both NFRC 100 and NFRC 200 will have the standard frame material (ie non-residential aluminum) and size that could be used in the simulation process. if that is the case, the spec sheet that indicated the U-factor is conformed with NFRC 100 and SHGCSolar heat gain coefficient (SHGC): The fraction of solar gain admitted through a window, expressed as a number between 0 and 1. is conformed with NFRC 200 should be used, isn't it?

At first, it is hard to include the frame in the process, since each frame on-site of each window is different in size but it seems that the NFRC 100 and 200 is simpler than I thought (if default frame with standard size can be used). Am I correct?

Thanks

3
7
0
Jatuwat Varodompun Dr, Green Building Soultion Nov 07 2016 LEEDuser Member 2084 Thumbs Up

Thanks Marcus

I am not quite know the NFRCNational Fenestration Rating Council (NFRC) is a non-profit organization that provides uniform, independent rating and labeling used to measure and compare energy performance of windows, doors, skylights, and attachment products. standard. After I read it, it sound like both NFRC 100 and NFRC 200 will have the standard frame material (ie non-residential aluminum) and size that could be used in the simulation process. if that is the case, the spec sheet that indicated the U-factor is conformed with NFRC 100 and SHGCSolar heat gain coefficient (SHGC): The fraction of solar gain admitted through a window, expressed as a number between 0 and 1. is conformed with NFRC 200 should be used, isn't it?

At first, it is hard to include the frame in the process, since each frame on-site of each window is different in size but it seems that the NFRC 100 and 200 is simpler than I thought (if default frame with standard size can be used). Am I correct?

Thanks

4
7
0
Jatuwat Varodompun Dr, Green Building Soultion Nov 07 2016 LEEDuser Member 2084 Thumbs Up

I am not familiar with NFRCNational Fenestration Rating Council (NFRC) is a non-profit organization that provides uniform, independent rating and labeling used to measure and compare energy performance of windows, doors, skylights, and attachment products. standards. However, after I read them, it seems that both NFRC 100 and 200 will refer to the standard frame size and material such as non-residential aluminum to simulate both U-factor and SHGCSolar heat gain coefficient (SHGC): The fraction of solar gain admitted through a window, expressed as a number between 0 and 1.. if that is the case, the spec from the manufacturer that indicates both NFRC 100 and NFRC 200 should satisfy the credit requirement. Am I right?

At first, I though that if you have to include the actual frame size for each window. it would complicate the model a lot because each window would have different U-factor and SHGC. but it would not be the case if NFRC 100 and 200 refer to standard frame size and reference material. Is my assumption correct?

Thanks

5
7
0
Jatuwat Varodompun Dr, Green Building Soultion Nov 07 2016 LEEDuser Member 2084 Thumbs Up

I am not familiar with NFRCNational Fenestration Rating Council (NFRC) is a non-profit organization that provides uniform, independent rating and labeling used to measure and compare energy performance of windows, doors, skylights, and attachment products. standards. However, after I read them, it seems that both NFRC 100 and 200 will refer to the standard frame size and material such as non-residential aluminum to simulate both U-factor and SHGCSolar heat gain coefficient (SHGC): The fraction of solar gain admitted through a window, expressed as a number between 0 and 1.. if that is the case, the spec from the manufacturer that indicates both NFRC 100 and NFRC 200 should satisfy the credit requirement. Am I right?

At first, I though that if you have to include the actual frame size for each window. it would complicate the model a lot because each window would have different U-factor and SHGC. but it would not be the case if NFRC 100 and 200 refer to standard frame size and reference material. Is my assumption correct?

Thanks

6
7
0
Jatuwat Varodompun Dr, Green Building Soultion Nov 07 2016 LEEDuser Member 2084 Thumbs Up

I am not familiar with NFRCNational Fenestration Rating Council (NFRC) is a non-profit organization that provides uniform, independent rating and labeling used to measure and compare energy performance of windows, doors, skylights, and attachment products. standards. However, after I read them, it seems that both NFRC 100 and 200 will refer to the standard frame size and material such as non-residential aluminum to simulate both U-factor and SHGCSolar heat gain coefficient (SHGC): The fraction of solar gain admitted through a window, expressed as a number between 0 and 1.. if that is the case, the spec from the manufacturer that indicates both NFRC 100 and NFRC 200 should satisfy the credit requirement. Am I right?

At first, I though that if you have to include the actual frame size for each window. it would complicate the model a lot because each window would have different U-factor and SHGC. but it would not be the case if NFRC 100 and 200 refer to standard frame size and reference material. Is my assumption correct?

Thanks

7
7
0
Marcus Sheffer LEED Fellow, 7group Nov 07 2016 LEEDuser Expert 65845 Thumbs Up

NFRCNational Fenestration Rating Council (NFRC) is a non-profit organization that provides uniform, independent rating and labeling used to measure and compare energy performance of windows, doors, skylights, and attachment products. is a testing procedure that US window manufacturers use to certify the performance of specific window products. It can't really be used outside that. If the window manufacturer has this information then you can use it.

If there are large variations in window size you should develop a methodology for more accurately modeling the windows rather than just model the NFRC value the same for each. So which method you use to model the windows will vary depending on the situation. You can always model the frames separate from the glazing and just use the NFRC values as a test that your model is accounting for the frames accurately.

Post a Reply
0
0
Vernon Smith Principal Engineer Smith Energy Engineers, LLC
Nov 01 2016
LEEDuser Member
4 Thumbs Up

Walk-in coolers and freezers

Project Location: United States

I am modeling a 35,000 sf cafeteria that has seven walk-in coolers/freezers with total floor area of about 1700 sf. They are in the basement and first floor of the building. In Energy Plus, the refrigeration model accounts for the energy load on adjacent spaces and recognizes the impact of door openings, air exchange with adjacent spaces, condenser location, and heat exchange through the walls of the unit with the adjacent spaces. It also will model condenser heat recover, which is a feature that will be included in the Proposed Design. However, it is my understanding that there is no requirement (in Energy Plus or ASHRAE 90.1) to model the walk-in boxes physically, meaning they do not have to be represented as spaces in the model. But they occupy space within the building and I think the floor area they occupy should be physically modeled and designated as unconditioned space, with no ventilation required and the walls, floor, and ceiling areas set as adiabatic. But, one of the freezers is in a section of the basement next to three underground exterior walls. This makes me not as sure about making the wall adiabatic.
Since walk-in coolers and freezers are process loads, so I would assume that the interior lighting is considered process load as well. The walk-in floor area would be excluded from calculating the baseline lighting power density allowance.

Are my assumptions correct? Comments, corrections, and guidance are most appreciated!

1
1
0
Marcus Sheffer LEED Fellow, 7group Nov 02 2016 LEEDuser Expert 65845 Thumbs Up

You are allowed to model these kinds of things different ways as long as you can demonstrate that the way you are modeling it is thermodynamicly the same as the actual condition. So you are not required to model it in place but you are required to demonstrate that your modeling method accounts for all the effects of modeling it in place. Sounds like you have some doubts about that and I agree.

I don't think the lighting is process. I think these are storage spaces.

Post a Reply
0
0
sherif el adly Egis Rail
Oct 23 2016
LEEDuser Member
25 Thumbs Up

water cooled chillers

Project Location: Saudi Arabia

Hi Marcus,
I am working on a project in KSA of about 404330ft2.
According to that area and with reference to ASHREA appendix G, a water cooled chiller should be considered in baseline of the model.
The HVAC represents 56% of the total energy consumption of the building.
The building is totally under the ground and complying with ASHREA requirement for envelope, heating, lighting,...etc.
The availability of water and approval of municipality to provide water for the HVAC system is almost impossible and if so contractor shall extend the grey water line for about 60km to reach the site.
The other option is to transport water by vehicles and this can severely affect the operation of the building.
Is there any possible solution? or can be any relax to this prerequisite to respect the environmental conditions of this project?

1
1
0
Marcus Sheffer LEED Fellow, 7group Oct 23 2016 LEEDuser Expert 65845 Thumbs Up

You are not required to install a water cooled chiller for your project. You are only required to model a water cooled chiller in the Baseline model.

Post a Reply
0
0
Saif Abdulameer
Oct 17 2016
LEEDuser Member
14 Thumbs Up

Decorative Exterior Lighting

Project Location: United States

Hi everyone,

I am working on a project that has exterior decorative lights such as tree lights, small umbrella lights etc. Should I account for them or no and if so, which category of Table 9.4.5 of ASHRAE 90.1 2007 should I use?

Thank you,

1
2
0
Santiago Velez ASHRAE BEMP HBDP - LEED GA, Building Performance Consultant , Zonda Engineering Oct 17 2016 LEEDuser Member 92 Thumbs Up

Hi Saif. I think you should account for them. Building grounds - Special features Area / Plaza Area.

2
2
0
Saif Abdulameer Oct 19 2016 LEEDuser Member 14 Thumbs Up

Thank you

Post a Reply
0
0
Victoria Watson
Oct 14 2016
LEEDuser Member
226 Thumbs Up

CHP - Approach

Project Location: Canada

Hi, I have a project with a CHPCombined heat and power (CHP), or cogeneration, generates both electrical power and thermal energy from a single fuel source. and I am unsure how to model in line with requirements.

It is to be constructed as part of the current project and will be in the LEED boundary. However ultimately it will be sold to the utility (who is technically owned by the county who owns the building but different entities so not really) who will sell the electricity back to the project building for a reduced rate and give the waste heat to the project for free (which is used for heating and in absorption chillers).

My Question is, should I model as per the proposed operation? Free waste heat, reduced cost electricity even if it will eventually not be owned by the project building. With the baseline being as per 90.1

OR

Should I model as if the CHP is on site and owned by building so traditional CHP/absorption chiller set up - Pay for gas input, get heat and electricity as generated by the CHP.

Thanks
Victoria

1
2
0
Marcus Sheffer LEED Fellow, 7group Oct 31 2016 LEEDuser Expert 65845 Thumbs Up

Sounds like if it is part of the current project and within the boundary it gets counted as on-site CHPCombined heat and power (CHP), or cogeneration, generates both electrical power and thermal energy from a single fuel source.. Does this plant serve other buildings? If so then all externally used electricity or waste heat is treated as a process. This fuel input is then modeled identically in both models.

2
2
0
Marcus Sheffer LEED Fellow, 7group Oct 31 2016 LEEDuser Expert 65845 Thumbs Up

There is additional guidance on these kinds of situations in the Reference Guide.

Post a Reply
0
0
Ed Healy ESD Consultant, LEED AP BD+C Hurley Palmer Flatt
Oct 13 2016
LEEDuser Member
171 Thumbs Up

Combination of New Build and Existing

Project Location: United Kingdom

Hello,
I am working on the major renovation of an existing office building and new construction of a new entrance/reception atrium. Both aspects are being assessed under the one LEED submission, as both share the same physical space (high level walkways from the office building are located in the atrium at high level). As such the ASHRAE 90.1-2007 model comprises both buildings.
My question is whether the model needs to be rotated for the 0, 90, 180 & 270deg rotations. From the guidance provided above existing buildings do not need to be rotated. However as there is an element of new build here, how should we deal with it? The existing element is much greater than the new build in terms of floor area.
We have worked off the basis that we must rotate the model to date, however can we justify not rotating, as the orientation of the new build is effectively dictated by the existing (follows the outline of the existing building).
Thanks!

1
2
0
Marcus Sheffer LEED Fellow, 7group Oct 13 2016 LEEDuser Expert 65845 Thumbs Up

No need to rotate for a small addition. Buildings with up to 50% new construction do not need to be rotated. See the Advanced Energy Modeling Guide for LEED.

2
2
0
Ed Healy ESD Consultant, LEED AP BD+C, Hurley Palmer Flatt Oct 24 2016 LEEDuser Member 171 Thumbs Up

Thanks for clarifying Marcus!

Post a Reply
0
0
Nicolas Martinez Ochoa
Oct 12 2016
Guest
32 Thumbs Up

Gas Instantaneous Water Heater

Hello,
I’m working in an office building in Bogotá, Colombia. The building has 11 gas instantaneous water heaters, with 48 kW capacity each. As you know, this equipment is included in 7.8 table of ASHRAE 90.1 2007, in the category “Gas Instantaneous water heaters - < 50,000 BtuA unit of energy consumed by or delivered to a building. A Btu is an acronym for British thermal unit and is defined as the amount of energy required to increase the temperature of 1 pound of water by 1 degree Fahrenheit, at normal atmospheric pressure. Energy consumption is expressed in Btu to allow for consumption comparisons among fuels that are measured in different units./h and >200,000 Btu/h”, the minimum performance required for this equipment is 0.62 EF (Energy Factor). Due to the equipment does not store hot water, May I assume that the equipment operates with a thermal efficiency equal to the Energy factor, it means, equal to 0.62?
Thank you

1
1
0
Marcus Sheffer LEED Fellow, 7group Oct 13 2016 LEEDuser Expert 65845 Thumbs Up

Yes if they have no storage at all. However they usually have some minimal storage so you need to account for it in the EF formula.

Post a Reply
0
0
Charalampos Giannikopoulos Senior Sustainability Consultant DCarbon
Oct 05 2016
LEEDuser Member
1498 Thumbs Up

Exceptional calculation for process load

What would be the process of an exceptional calculation to prove reduction in process office equipment density for an office building? Could the baseline case be based on the current density at another but similar facility (belonging to the same owner) which could be reduced thanks to the use of Energy Star equipment or other efficiency measures? Should a CIRCredit Interpretation Ruling. Used by design team members experiencing difficulties in the application of a LEED prerequisite or credit to a project. Typically, difficulties arise when specific issues are not directly addressed by LEED information/guide be submitted to get approval for such an approach? Thanks in advance.

1
1
0
Marcus Sheffer LEED Fellow, 7group Oct 05 2016 LEEDuser Expert 65845 Thumbs Up

There is already an approved method for claiming this savings. No CIRCredit Interpretation Ruling. Used by design team members experiencing difficulties in the application of a LEED prerequisite or credit to a project. Typically, difficulties arise when specific issues are not directly addressed by LEED information/guide needed. This would be similar to how you claim savings for Energy Star appliances in multi-family residential projects.

The Baseline should be determined using the Energy Star calculator for the specific equipment for which you are pursuing savings. The Proposed is then just modeled as designed. Make sure you have documentation to ensure that the equipment will be or has been purchased. Then account for the rest of the process loads in the usual manner. Don't just use a W/sf value as it will not be accurate enough. Simply model all the equipment directly in the appropriate spaces.

Post a Reply
0
0
Matt Edwards M-E Engineers Inc.
Oct 05 2016
LEEDuser Member
108 Thumbs Up

LEED 2009 DES Projects - Rule Change - August 2016

Project Location: United States

I'm working on a project on a collegiate campus that utilizes district chilled water and steam, and I have run into what appears to be a rule change that was snuck into the v2009 Minimum Energy Performance Calculator. In the past, the DES Guidance document was in effect and allowed an Option 1 (cost-neutral) path that relied on calculated district energy rates rather than actual energy rates. The DES guidance document has equations for determining district chilled water, steam, and hot water rates based on your virtual electricity and natural gas rates. We have used this on many district energy projects, and in LEED Online we used the EAp2 Table 1.4 spreadsheet to document our work. As of September 2016, all group certification projects (projects on a campus, shared credits, etc) are now required to use the v2009 Minimum Energy Performance Calculator instead of the EAp2 Table 1.4 spreadsheet. Buried in the v2009 Minimum Energy Performance Calculator are selectable options for compliance path for DES projects, and Option 1 in the DES Guidance document is not an allowed path. ASHRAE Addendum ai is allowed, but it includes a major difference in that you now have to use actual rates for district utilities rather than calculated rates for district utilities (and I assume by extension you must also use the actual electricity and natural gas rates since state-wide average rates cannot be mixed with local rates). Is Option 1 in the DES Guidance document now disallowed for all DES projects as of September or August 2016 (when the spreadsheet was dated), or is it disallowed only when you are using shared credits between several buildings on the same site and must use the v2009 Minimum Energy Performance Calculator (and you cannot use the EAp2 Table 1.4 spreadsheet)? It's very difficult to commit to a path early on and give solid guidance to a project team when these rules appear to change at any time via updates to the required spreadsheets in LEED Online. The rate disparity between DES Guidance document Option 1 and actual rates can be severe, and it can sway the score drastically in either direction. Seems very arbitrary to require a different energy modeling methodology based on a technicality in forms required based on your submission path.

1
5
0
Matt Edwards M-E Engineers Inc. Oct 05 2016 LEEDuser Member 108 Thumbs Up

Update: Upon entering LEED Online I discovered that all new projects regardless of whether they are campus or not are now required to use the Minimum Energy Performance calculator. Is there any guidance on developing rates for ASHRAE 90.1 Addendum ai when a university has no way of determining it? Maybe we use the DES Option 1 rates in the absence of a real rate from the district provider? What about maintenance costs that typically inflate actual district utility rates?

2
5
0
Marcus Sheffer LEED Fellow, 7group Oct 06 2016 LEEDuser Expert 65845 Thumbs Up

I think the issue is simply associated with the latest forms. Those forms were created for LEED v4 and then modified for LEED 2009. Some issues like this may have been missed. There was not a change in requirements. You can still use Option 1 in the DES.

You have some options. You could request that GBCIThe Green Building Certification Institute (GBCI) manages Leadership in Energy and Environmental Design (LEED) building certification and professional accreditation processes. It was established in 2008 with support from the U.S. Green Building Council (USGBC). change the forms for your project to the previous versions. I know they used to do that, not sure if they still are doing so. You could also just fill out the tabs in the Minimum Energy Performance Calculator that are related to the energy modeling results and then use the old Section 1.4 Tables spreadsheet to document the energy modeling inputs.

3
5
0
Santiago Velez ASHRAE BEMP HBDP - LEED GA, Building Performance Consultant , Zonda Engineering Oct 06 2016 LEEDuser Member 92 Thumbs Up

Good to know. I have the same issue with a DES project. Do you know when this form was implemented? I have two project registered in 2015 which have different versions EAp2 form, one requiring Section 1.4 Table, and the other one Minimum Energy Performance calculator.

4
5
0
Marcus Sheffer LEED Fellow, 7group Oct 06 2016 LEEDuser Expert 65845 Thumbs Up

I don't know the date when the v6 forms came out. They are up to v7 now. If you want to switch to the old ones the last one for EAp2 was v5.

5
5
0
Santiago Velez ASHRAE BEMP HBDP - LEED GA, Building Performance Consultant , Zonda Engineering Oct 06 2016 LEEDuser Member 92 Thumbs Up

Ok. Thanks!

Post a Reply
0
0
R2M Solution Srl R2M Solution Srl
Oct 03 2016
LEEDuser Member
153 Thumbs Up

pressure drop adjustment System 1

Project Location: Italy

Can the pressure dropPressure drop is a decrease in pressure from one point in a pipe or tube to another point due to a restriction or length or diameter of the pipe or tube (resistance to flow). adjustment (e.g. for fully ducted return or for particulate filtration MERVMinimum Efficiency Reporting Value (MERV) rating is an American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) measurement scale which rates the effectiveness of air filters. ) be applied to System 1?

1
1
0
Marcus Sheffer LEED Fellow, 7group Oct 03 2016 LEEDuser Expert 65845 Thumbs Up

None of the pressure dropPressure drop is a decrease in pressure from one point in a pipe or tube to another point due to a restriction or length or diameter of the pipe or tube (resistance to flow). adjustments apply to Systems #1 or #2.

Post a Reply
0
0
Cory Duggin Energy Engineer TLC Engineering for Architecture
Sep 28 2016
LEEDuser Member
135 Thumbs Up

Energy Model DHW peak flow vs WEp1 peak flow

When claiming DHWDomestic hot water (DHW) is water used for food preparation, cleaning and sanitation and personal hygiene, but not heating. savings due to low flow fixtures, i use the calculator in Table 1.4 to come up with my peak baseline and proposed DHW flows, which it says should use data from WEp1. If the project contains DHW flow fixtures outside of the scope of WEp1, such as pot filler sinks, should those be included in the calculation for the energy model peak flows? If they are included, then the energy model peak DHW flows won't be consistent with WEp1.

1
1
0
Marcus Sheffer LEED Fellow, 7group Sep 28 2016 LEEDuser Expert 65845 Thumbs Up

The elements that are in WEp1 should be consistent with the elements that are in the hot water demand calculations for EAp2 (flow rates, total consumption, etc). You can include other hot water demand savings just make sure you provide some justification for your baseline assumptions.

I know it does seem that LEED encourages foolish consistency but "A foolish consistency is the hobgoblin of little minds." Emerson :-)

Post a Reply
0
0
Panupant Phapant SCG Cement - Building Materials Co.,Ltd.
Sep 23 2016
LEEDuser Member
531 Thumbs Up

Fan power in conditioned space

Project Location: Thailand

Hello,
My production line space in our project have an supply fan, exhaust fan and make-up fan to supply OA in conditioned space. All of the fans is operate continuously during occupied periods.
Normally, baseline fan power should be modeled using a portion of the system fan power allowance.
Where can I put make-up fan power in Table 1.4.7A because the form have only supply, return/relief and exhaust ? Can I grouping between make-up and exhaust fan ?
Now my simulation model use only the ratio between supply and exhaust fan. For OA I put the flow but make-up fan power was added to meter side identically in baseline and proposed case.
I used eQUEST for simulated this project.May be it was not correct method.

1
1
0
Marcus Sheffer LEED Fellow, 7group Sep 23 2016 LEEDuser Expert 65845 Thumbs Up

Normally the supply fan bring in the OA. So I would proportion the fan power in the baseline the same as the Proposed fans except that I would add together the make-up air fan and the supply fan. The exhaust fan power would be what is left over. Report it as modeled in Table 1.4.7A.

The make-up fan sounds like a part of the system so it should not be modeled identically.

Let me run through an example. Suppose you had a 2 kW supply air fan, a 1 kW make-up air fan and a 1 kW exhaust fan. Add the SA and MUA fans. So now you have a 3:1 ratio of fan power. Do your baseline fan calculations and then proportion the baseline fan power between supply and exhaust with a 3:1 ratio as well. You should not model the make-up air fan in the baseline at all, just supply and exhaust.

Post a Reply
0
0
Panupant Phapant SCG Cement - Building Materials Co.,Ltd.
Sep 23 2016
LEEDuser Member
531 Thumbs Up

LPD for manufacturing space

Project Location: Thailand

Hi everyone,
The project is cosmetic and medicine manufacturing with office.
My question is, What difference between detailed manufacturing and Low/High BayA bay is a component of a standard, rectilinear building design. It is the open area defined by a building element such as columns or a window. Typically, there are multiple identical bays in succession. in ASHRAE90.1-2007 table 9.6.1?
What manufacturig type can be assume to be detailed manufacturing ?

1
1
0
Marcus Sheffer LEED Fellow, 7group Sep 23 2016 LEEDuser Expert 65845 Thumbs Up

This would be more fully explained in the IESNA Lighting Handbook depending on the specific tasks being performed. In general I think it would be reserved for areas that require a significantly higher lighting level because the tasks being performed are very small and harder to see. If you use the detailed manufacturing you will probably be asked to justify it.

Post a Reply
0
0
Rathnashree Bharadwaj
Sep 22 2016
Guest
67 Thumbs Up

Unmet hours in process areas

Hello,

The project is Pharmaceutical Manufacturing facility, where a set of parameters such as Temperature, Humidity &Pressure are to be controlled accurately. We have considered the air conditioning for these areas as process loads and modeled identically in base and proposed case. Now, we are facing unmet hour issue in these areas. Is it required to check and fix unmet for these areas or leave it as such because it is modeled as process loads.

Start a new LEED comment thread

Dec 08 2016
Type the characters you see in this picture. (verify using audio)
Type the characters you see in the picture above; if you can't read them, submit the form and a new image will be generated. Not case sensitive.

Copyright 2016 – BuildingGreen, Inc.