NC-2009 IEQc7.1: Thermal Comfort—Design

  • NC_IEQc7-1_Type3_ThermalComfortDesign Diagram
  • Documenting standard practice

    IEQc7.1 requires that HVAC designs meet the requirements of ASHRAE Standard 55-2004, which deals with thermal comfort of building occupants. Specifically, ASHRAE 55 requires project teams to evaluate the ability of building systems to stay within a comfortable range of air temperatures, radiant temperatures, humidity, and air speeds during design weather conditions.

    In most cases, designing a system that complies with ASHRAE-55 is standard practice and documentation is the only LEED-specific requirement for achieving the credit, so it should cost very little to earn. Earning this credit also sets the stage for you to earn IEQc7.2: Thermal Comfort—Verification.


  • Natural conditioning and certain occupancies make it tricky

    Meeting this credit in naturally conditioned spaces is tricky, because it’s hard to ensure that thermal conditions remain within the requisite range. It’s really only possible in a few specific climatic regions with especially temperate conditions.

    Mixed-mode spaces have a better chance. That is, naturally ventilated buildings can still meet the requirements of ASHRAE-55 if heating and cooling systems can keep indoor conditions comfortable year-round. 

    Certain spaces, such as greenhouses, gymnasiums, warehouses or manufacturing facilities often operate outside of the ranges defined by ASHRAE-55, which can put the project in conflict with designing either mechanical and passive systems that meet the credit requirements. If you have these spaces in your project, check with GBCI on whether you can earn the credit through an alternative compliance path. 

    Regardless of the project type, considering target thermal comfort conditions—and designing to meet those conditions—early in the process is very helpful. 

    A higher bar for coordination

    While the credit requirements, and the referenced ASHRAE standard, have not changed from older versions of LEED, the documentation requirements for the credit are now more stringent. Completing the new LEED Online credit form requires greater attention to detail and more supporting calculations, which set a higher bar for coordination among team members.  

    Different standards for international projects

    International projects can choose to demonstrate compliance with ISO 7730: 2005 and CEN Standard EN 15251: 2007, or another local equivalent if appropriate. Those following ISO 7730 and CEN Standard EN 15251 should provide the same level of documentation to meet the credit, including PMV or PPD calculations and an evaluation of local thermal comfort criteriaComfort criteria are specific design conditions that take into account temperature, humidity, air speed, outdoor temperature, outdoor humidity, seasonal clothing, and expected activity. (ASHRAE 55–2004).  

    FAQs for IEQc7.1

    ASHRAE-55 comfort criteria ask for space air speed. Is this the same as the supply air volume measured in cubic feet per minute (CFM)?

    Supply air volume (CFM) is different from linear air speed measured in feet per minute (FPM). Linear air speed in FPM is relevant to comfort requirements. This information can be derived from the diffuser throw value.

    
What should I do about a warehouse space?

    You can establish compliance based on an alternative method to ASHRAE-55 by identifying an equivalent source of thermal comfort recommendations (from an industry group or a specialized ASHRAE design guide). 

    For spaces such as warehouses that are not normally conditioned for comfort, the project team may include one or more of the following design alternatives: radiant flooring; circulating fans; passive systems, such as nighttime air, heat venting, or wind flow; localized active cooling (refrigerant or evaporative-based systems) or heating systems; or localized, hard-wired fans that provide air movement for occupants' comfort. See LEED InterpretationLEED Interpretations are official answers to technical inquiries about implementing LEED on a project. They help people understand how their projects can meet LEED requirements and provide clarity on existing options. LEED Interpretations are to be used by any project certifying under an applicable rating system. All project teams are required to adhere to all LEED Interpretations posted before their registration date. This also applies to other addenda. Adherence to rulings posted after a project registers is optional, but strongly encouraged. LEED Interpretations are published in a searchable database at usgbc.org. #10279 for more details.


    How can thermal conditions for areas with metabolic rates outside of 1.0–1.3 be determined? (Per ASHRAE Standard 55-2004 Section 5.2.1.1, Figure 5.2.1.1 can be used for areas with metabolic rates between 1.0 and 1.3).

    Areas with a metabolic rate outside of 1.0-1.3 need to use a different tool to show compliance with ASHRAE-55 for that space. For spaces with metabolic rates below 1.0, utilize a tool like this one from UC–Berkeley rather than following the graphical method. 

    ASHRAE-55 was designed to accommodate activities up to 2.0 MET, but it’s possible to have higher MET levels in your project if you have a kitchen, fitness center, gymnasium, or warehouse. If this is the case, refer to LEED interpretation #10279 for guidance. 

    Most spaces with MET levels above 2.0 need to meet the cooling and humidity temperature set points for spaces with MET levels of 2.0 in order to meet the intent of EQc7.1.

    In order to demonstrate compliance, project teams need to complete one of the following options:

    • Option 1. Evaluate whether the activities in the space will be continuous or varied. For example, in a fitness center, occupants may be expected to spend about half the time working out and half the time resting or stretching. The best way to approach the calculation would be to use the time-weighted average metabolic rate over a typical hour. Appendix A of ASRHAE-55 explains time-averaging in detail.
    • Option 2. If the time-averaged metabolic rate is still above 2.0, then the engineer will not be able to use the graphical method. Use the PMV method of compliance, utilizing a tool like this one from UC–Berkeley with the appropriate Clo levels, but with MET set to 2.0.
    • Option 3. Identify some other source (such as industry group, specialized ASHRAE design guide, etc.) that is specifically about the area under question, identify the recommended temperature and humidity setpoints, and the document that the mechanical systems have been designed to maintain those setpoints.

    There are a few spaces in my project that can’t meet these requirements. Can’t I just exclude them?

     According to the IEQ Space Matrix, spaces can be excluded from this credit if they’re non-regularly occupied and not normally comfort conditioned. For example, the storage area of a warehouse that’s accessed only intermittently is a good candidate for exclusion. However, any space that building occupants are expected to spend fifteen minutes or more at a time can’t be exempted.

Legend

  • Best Practices
  • Gotcha
  • Action Steps
  • Cost Tip

Pre-Design

Expand All

  • The mechanical engineer and architect review ASHRAE-55 along with the credit requirements in the context of the project. ASHRAE-55 requires that you establish a comfort zone based on several variables that affect occupant comfort, and design mechanical systems to create thermal conditions within the comfort zone in each occupied space. Comfort zone calculations are based on the following variables:

    • Metabolic rate
    • Clothing insulation level
    • Air temperature
    • Radiant temperature
    • Air speed
    • Humidity

     


  • Identify any unique programming or climate conditions that might make it tricky to get the credit. Fitness rooms, gyms, natatoriums, or very humid climates often create conditions that require special consideration.


  • Consider whether mechanical or natural ventilation will be used. When considering natural ventilation systems, review ASHRAE-55 section 5.3 for a description of the relevant requirements. 


  • Include credit requirements in the Owner's Project Requirements for the commissioning credits EAp1 and EAc3


  • Consider design implications of credit requirements early in program development. For example, if you are in a humid climate you may need additional dehumidification, which will affect your mechanical space requirements. 


  • Consider how credit requirements will affect energy use and occupant experience, and whether programming is consistent with this credit. This credit is particularly worthwhile for any indoor environment in which occupant productivity is of key importance, and where occupants will benefit from optimized indoor thermal conditions.


  • Consider pursuing IEQc7.2: Thermal Comfort—Verification in combination with this credit. IEQc7.2 requires an occupant comfort survey after occupancy. 


  • In order to achieve IEQc7.2, you have to achieve IEQc7.1, and you will have to install a permanent monitoring system to provide ongoing feedback about thermal conditions. If you are only pursuing IEQc7.1, there is no requirement for a permanent monitoring system. Residential projects cannot earn IEQc7.2.


  • This credit is generally a low- or no-cost credit. When it does add significant costs, that’s usually because it wasn’t considered early enough, so more equipment has to be added to provide, for example, additional dehumidification. An added cost like that could be prevented by designing the right system early in the schematic design.  


  • In climates where either heating or cooling predominate, or in very humid climates, meeting ASHRAE-55 year-round might require additional system components. For example, spaces that may not otherwise be cooled—like gymnasiums—may need dehumidification or cooling systems to meet the ASHRAE-55 comfort criteria year-round.


  • It is always important to consider building orientation, the heat-island effect, insulation levels and other design considerations that will have a direct effect on thermal conditions and on the energy consumed to achieve those conditions, but these are not variables that are used as inputs for establishing a thermal comfort zone in ASHRAE-55, so they don’t directly affect whether or not you achieve this credit.

Schematic Design

Expand All

  • Review how building systems might contribute to or hinder achievement of this credit and review site-specific conditions that will affect building conditioning. 


  • Determine which HVAC system types (mechanical, mixed mode, or natural) and system components can best meet the credit requirements and review any special programming requirements for ventilation, humidity and thermal conditions. For example, consider whether in-floor radiant heating is preferable to forced-air systems and which are best suited to a project’s programming and budget, and confirm that the system will be capable of operating within the established comfort zone. 


  • When beginning to consider thermal conditioning systems, review which system types will not only meet credit requirements, but will balance performance, efficiency and cost while creating an optimal thermal environment in the given climatic region. In some regions, direct evaporative cooling may be an appropriate option, while in others dehumidification may be needed to meet the credit requirements. Review the feasibility of natural ventilation systems versus mechanical systems and consider their effect on energy use, programming, and credit achievement. 


  • Review ASHRAE-55 section 6.1.1 to understand the credit documentation requirements. Assess these inputs:

    • Weather design conditions for peak load
    • Hours per typical year that outdoor temperatures exceed design conditions
    • Maximum design humidity
    • Design air speed
    • Radiant temperature asymmetry (refers to the changes in personal temperature around the body as affected by differences in nearby surface temperatures, such as heated floors and cold windows)
    • Vertical air temperature difference
    • Floor surface temperature
    • Drafts

  • Review how thermal controls and operable windows affect credit requirements. Projects in very temperate climates may meet the credit requirements through the use of operable windows exclusively, as long as mean monthly outdoor temperatures are between 50°F–92°F. See ASHRAE-55 section 5.3 for details. 


  • Include credit-related information in the Basis of Design for the commissioning credits EAp1 and EAc3. At a minimum this should include:

    • that you require compliance with this credit;
    • that you require compliance with ASHRAE-55;
    • and what operating ranges should be maintained.

  • Don’t assume that projects in Southwestern or other dry climates will automatically meet the humidity requirements of ASHRAE-55. These climates may have a significant number of days in which operating conditions will exceed the ASHRAE-55 requirements for humidity. Refer to the National Climatic Data Center for regional weather data (see Resources). 


  • Natural ventilation designs are more significantly affected by climate and weather than mechanical systems. Although the methodology and inputs for documenting compliance are the same as for mechanical systems, in certain regions project teams using passive systems may have difficulty meeting ASHRAE-55 due to program constraints or seasonal temperatures that are outside of the prescribed range of 50°F–92°F. 


  • Provide occupant controls for each individual space and avoid trying to normalize conditions in large areas or zones of a building. Separate controls will make it easier to achieve the credit in all spaces and improve occupant comfort while reducing unneeded energy use. For example, if there are ten adjacent offices, provide controls for each office separately. This strategy can also help you earn IEQc6.2: Controllability of Systems—Thermal Comfort. Added controls may increase upfront costs, but reduced energy consumption should help offset those costs.

Design Development

Expand All

  • Examine operating conditions to confirm how likely you are to meet the credit requirements.


  • Pick the best calculation method for demonstrating credit achievement. Document IEQc7.1 using a Predicted Mean Vote/Predicted Percentage of Dissatisfied (PMV/PPD) calculation, ASHRAE comfort tool, or a psychrometric comfort zone chart from ASHRAE-55. The method you pick will likely be determined by the preference and past experience of the mechanical engineer. (See the Resources tab for software options).


  • Include the following inputs on the LEED Online credit form:

    • Clothing Insulation and Metabolic Rate of building occupants
    • Weather design conditions used for peak load calculations
    • Hours per year that outdoor temperatures exceed design conditions
    • Maximum Design Humidity
    • Design Air Speed
    • Radiant temperature asymmetry
    • Vertical air temperature difference
    • Floor surface temperature
    • Draft.

  • Make design adjustments to meet credit requirements during design development, keeping in mind the potential impacts on energy use.


  • Make sure that HVAC engineers track and reconfirm credit-compliant operating ranges through the design development phase.


  • Make sure that the Basis of Design for commissioning reflects compliance with credit requirements and includes design assumptions and load calculations.


  • Provide ample thermal controls for building occupants. This will increase comfort and occupant satisfaction and will keep operating conditions within the prescribed ranges of ASHRAE-55. 


  • Occupant access to thermal controls can help to meet the credit requirements on a space-by-space basis while increasing energy efficiency (by preventing conditioning of a whole HVAC zone rather than individual spaces) and increasing occupant satisfaction by giving people greater control over their thermal conditions. Increasing occupant satisfaction will help projects that are attempting IEQc7.2. 


  • Variables like clothing levels and metabolic rates are not compliant or non-compliant, but are used instead to determine what appropriate operating ranges will be for a space. You have to show that your HVAC systems will create conditions within these operating ranges. 

Construction Documents

Expand All

  • Confirm required calculations based on the finalized design by using a PMV/PPD calculation, the ASHRAE comfort tool, or psychrometric zone chart. 


  • Complete all required LEED documentation and upload to LEED Online:

    • ASHRAE 6.1.1 documentation
    • IEQc7.1 requirements stated in the OPR and BOD
    • Thermal comfort variables and established comfort zone
    • Calculation results (dependent on chosen methodology)
    • O&M materials (as they are available).

     


  • Include ASHRAE-55 related performance requirements in the construction specifications.


  • Provide LEED documentation requirements in the specifications, including the LEED requirements for information contained in O&M manuals and designating the contractor as the signatory for this credit. 


  • Include LEED references in the drawings and specifications where appropriate. 


  • Make sure that contractor-related LEED documentation requirements and activities are in the specifications so that they are accounted for in estimates and bids.


  • You might want to defer documenting this credit until the construction submittal to confirm the appropriate system installation and inclusion of the required O&M information.

Construction

Expand All

  • Develop the Systems Manual, O&M manual, or equivalent. Ensure that the O&M manual includes the following:

    • General and specific instructions on the maintenance and operation of controls
    • Seasonal settings and changeovers
    • Limits in the adjustment of manual controls
    • Maintenance and inspection schedule for all thermal and other environmental and thermal condition-related building systems.

  • The contractor is the signatory for this credit, and has to confirm compliance with the bullets above and sign off on this credit. 


  • Be certain that the commissioning agent reviews the OPR and BOD and confirms that system design and installation will meet the credit requirements for operating ranges. 

Operations & Maintenance

Expand All

  • Set up building operations training to ensure that on-going operation of HVAC systems will meet ASHRAE-55, using the O&M manual for reference.


  • Encourage general contractors and mechanical contractors, commissioning agents and building operators to review O&M materials and maintenance procedures together to confirm that system performance and maintenance meets the original design intent.


  • Set up training with O&M staff on proper operating procedures.

  • USGBC

    Excerpted from LEED 2009 for New Construction and Major Renovations

    IEQ Credit 7.1: Thermal comfort - design

    1 Point

    Intent

    To provide a comfortable thermal environment that promotes occupant productivity and well-being.

    Requirements

    Design heating, ventilating and air conditioning (HVAC) systems and the building envelope to meet the requirements of one of the options below:

    Option 1. ASHRAE standard 55-2004 or non-U.S. equivalent

    Meet the requirements of ASHRAE Standard 55-2004, Thermal Comfort Conditions for Human Occupancy (with errata but without addenda1). Demonstrate design compliance in accordance with the Section 6.1.1 documentation. Projects outside the U.S. may use a local equivalent to ASHRAE Standard 55-2004 Thermal Comfort Conditions for Human Occupancy Section 6.1.1. [India ACP: Thermal Comfort]

    Option 2. ISO 7730: 2005 & CEN standard EN 15251: 2007

    Projects outside the U.S. may earn this credit by designing heating, ventilating and air conditioning (HVAC) systems and the building envelope to meet the requirements of International Organization for Standardization (ISO) 7730: 2005 Ergonomics of the thermal environment, Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteriaComfort criteria are specific design conditions that take into account temperature, humidity, air speed, outdoor temperature, outdoor humidity, seasonal clothing, and expected activity. (ASHRAE 55–2004); and CEN Standard EN 15251: 2007, Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics.

    1 Project teams wishing to use ASHRAE approved addenda for the purposes of this prerequisite may do so at their discretion. Addenda must be applied consistently across all LEED credits.

    Alternative Compliance Paths (ACPs)

    India ACP: ASHRAE 55-2004 Equivalent

    Projects in India may meet the desired comfort criteria specified in the following as a local equivalent to ASHRAE 55-2004:

    • For mechanically conditioned buildings, NBC 2005 Part 8, Section 3 - Table 2
    • For naturally conditioned buildings, NBC 2005 Part 8, Section 1 - Table 9

    Potential Technologies & Strategies

    Establish comfort criteriaComfort criteria are specific design conditions that take into account temperature, humidity, air speed, outdoor temperature, outdoor humidity, seasonal clothing, and expected activity. (ASHRAE 55–2004) according to ASHRAE 55-2004 (with errata but without addenda) that support the desired quality and occupant satisfaction with building performance. Design the building envelope and systems with the capability to meet the comfort criteria under expected environmental and use conditions. Evaluate air temperature, radiant temperature, air speed and relative humidity in an integrated fashion, and coordinate these criteria with IEQ Prerequisite 1: Minimum IAQIndoor air quality: The quality and attributes of indoor air affecting the health and comfort building occupants. IAQ encompasses available fresh air, contaminant levels, acoustics and noise levels, lighting quality, and other factors. Performance, IEQ Credit 1: Outdoor Air Delivery Monitoring, and IEQ Credit 2: Increased Ventilation.

Technical Guides

IEQ Space Matrix - 2nd Edition

This updated version of the spreadsheet categories dozens of specific space types according to how they should be applied under various IEQ credits. This document is essential if you have questions about how various unique space types should be treated. Up to date, 2nd Edition.


IEQ Space Matrix - 1st Ed.

This spreadsheet categories dozens of specific space types according to how they should be applied under various IEQ credits. This document is essential if you have questions about how various unique space types should be treated.  This is the 1st edition.

Organizations

ASHRAE 55-2004

This ASHRAE standard defines the criteria for human comfort that is followed to design mechanical systems.


U.S. Department of Energy, EERE - Building Energy Software Tools Directory

Information about the ASHRAE Thermal Comfort tool with ordering information.  


University of Nebraska, Lincoln

Information about how to use psychrometric charts.

Software Tools

Trane

Download free psychrometric chart software.


Climate Consultant

Free, easy-to-use program from UCLA that displays climate data in the form of psychrometric charts, among others.

Publications

National Climatic Data Center

The National Climatic Data Center provides regional weather data that you can use to assess your climate relative to ASHRAE-55 requirements.

Thermal Comfort Documentation

These sample documents, from a LEED for Schools 2009 project in Mass., demonstrate how to document that the project meets the thermal comfort design requirements of ASHRAE 55. LEEDuser thanks Christopher Schaffner of The Green Engineer for providing this sample.

LEED Online Forms: NC-2009 IEQ

Sample LEED Online forms for all rating systems and versions are available on the USGBC website.

Design Submittal

PencilDocumentation for this credit can be part of a Design Phase submittal.

247 Comments

0
0
David Mirabile LEED AP, BD+C
Jan 14 2016
Guest
970 Thumbs Up

ASHRAE 55 Compliance

My project is a Housing Authority remodel that has to meet Energy Star, thus be ASHRAE 55 compliant. Of course our budget is limited, but we are reusing perimiter HW finned tube in one of the buildings and adding Cooling only PTACs. The other building is EBB heat and adding PTACs as well. All apartments are one-bedroom and the PTAC will be placed in the living room with the intent that the adjacent bedroom is conditioned by the living room unit (remember budget constraints!). Fresh air is either windows or a central unit dumping into the corridors. My questions are as follows:

1.) Can I even do this with a PTAC and then if so can I do it with a single PTAC serving 2 rooms? It is definitely individual control, but multiple rooms, air speeds, humidity, etc are what they are based on the unit running per room temps.
2.) Am I reading correctly that radiant systems prevent me from using operative temps all together?
3.) If so, what programs are best recommended to figuring Mean Radiant Temps? (I do not believe my typical load program gives me this data)

Thanks

1
2
0
Christopher Schaffner Principal & Founder, The Green Engineer, Inc. Jan 25 2016 LEEDuser Expert 8431 Thumbs Up

I think you have a more basic issue. If you are relying on the windows for ventilation, the GBCI reviewers will only grant this credit if you can show comfort and ventilation can be met at the same time (i.e. with the windows open).

2
2
0
Lindsay Austrom Mechanical Engineer, Stantec Jan 25 2016 LEEDuser Member 718 Thumbs Up

David, I agree with Christopher's comment in terms of your first issue to address. However, it sounds like you may have a central ventilation system using corridor pressurization. In that case, I'll address your items 2 and 3.

2) If you have radiant heating/cooling, then you cannot assume that the operative temperature is equal to the space air temperature -- see ASHRAE 55 Appendix C. The operative temperature must then be calculated using the formula in Appendix C using the air temperature and mean radiant temperature (MRT).

You've described the heating as HW finned tube and EBB and the cooling as PTACs, which are all either free or forced convection. Do you have any radiant heating or cooling?

3) I use the ASHRAE Thermal Comfort Tool (purchase from ASHRAE, discount for members) which does include a MRT calculator. I don't know if any other software tools have the same. The CBE Thermal Comfort Tool requires manual input of either the operative temperature or air temperature and MRT.

You could also do a manual MRT calculation using the equations provided in Chapter 9 of the ASHRAE Fundamentals Handbook -- there is one for seated and one for standing occupants.

Post a Reply
0
0
SAMY Chamy Enginneer T&T Green
Jan 05 2016
Guest
155 Thumbs Up

MET Rates

1.What is a MET rate for Sewing machine workers (Jeans cloth stitching)
2.Is it acceptable to get this credit using Design alternative (HVLS Fans or Evaporative Cooler)
3.How we achieve this credit for ventilated Office spaces (MET - 1)

1
1
0
Christopher Schaffner Principal & Founder, The Green Engineer, Inc. Jan 25 2016 LEEDuser Expert 8431 Thumbs Up

1. Probably between 1.2 and 2.0, depending on whether they are seated or standing. Look at ASHRAE 55 Appendix A for a good table of MET rates. Pick the one that most closely fits.
2. If the comfort conditions can be met, the technology does not matter.
3. You need to be able to show that space conditions fall within the comfort zone. Not sure what you are asking exactly - read the tips above.

Post a Reply
0
0
Gabriela Crespo CxA, LEED AP BD+C, O+M Revitaliza Consultores
Nov 26 2015
Guest
176 Thumbs Up

Naturally Ventilated, Mechanically Cooled space

Project Location: Mexico

In ASHRAE 55, Section 5.3 Optional Method for Naturally Conditioned, it mentions that "There must be no mechanical cooling system for the space".
We are working on a residential project where each apartment has its individual conditioning system, it provides heating and cooling, but the ventilation is through operable windows.
Are we not elegible for this credit because of the conditions?

1
2
0
Christopher Schaffner Principal & Founder, The Green Engineer, Inc. Dec 01 2015 LEEDuser Expert 8431 Thumbs Up

Your are not eligible to comply using Section 5.3. As the standard states, when a building has no mechanical cooling "occupant's thermal responses...may differ from thermal responses in buildings with centralized HVAC systems". Since your building has cooling, one would not expect this adaptive thermal comfort effect.

You can still show compliance following the mechanical cooling pathway. (i.e. the standard path)

2
2
0
Gabriela Crespo CxA, LEED AP BD+C, O+M, Revitaliza Consultores Dec 01 2015 Guest 176 Thumbs Up

Thank you Christopher, this helps a lot!

Post a Reply
0
0
Ed Healy ESD Consultant hurleypalmerflatt
Nov 16 2015
LEEDuser Member
6 Thumbs Up

Which MRT to use

Project Location: Sweden

Hi,
I have the annual hourly mean radiant temperature results (from the energy model simulation). I'm wondering what MRT you have used in the past if you have all of these figures? How do you choose the MRT figure when you have all this data available for the entire year?

Thanks,

1
1
0
Christopher Schaffner Principal & Founder, The Green Engineer, Inc. Dec 01 2015 LEEDuser Expert 8431 Thumbs Up

You probably have more info than you need to document the credit. ASHRAE 55 uses the "operative temperature", which is a combination of air temperature, mean radiant temperature (MRT) and other factors. Unless you've got a space with a MET rate above 2.0, showing that air temperature and humidity stay within the comfort zone is usually sufficient to document the credit.

Post a Reply
0
0
Gustavo De las Heras Izquierdo Arch. Eng. LEED AP BD+C; O+M Revitaliza Consultores
Nov 13 2015
Guest
951 Thumbs Up

Inactive storage

I have read the definition of inactive storage in the space-matrix spreadsheat. However, it is not clear to me if I can consider a storage space that is used once a week as "inactive storage".
Thank you

1
3
0
Christopher Schaffner Principal & Founder, The Green Engineer, Inc. Nov 15 2015 LEEDuser Expert 8431 Thumbs Up

By the name "inactive storage" it sounds like it can be excluded. You should look at what kind of activity and occupancy occurs when it is "used once a week", and confirm that it is not a regularly occupied space.

2
3
0
Gustavo De las Heras Izquierdo Arch. Eng. LEED AP BD+C; O+M, Revitaliza Consultores Nov 15 2015 Guest 951 Thumbs Up

Thanks Christopher, they take aggregate material out of this room to make concrete strength tests.

3
3
0
Christopher Schaffner Principal & Founder, The Green Engineer, Inc. Nov 15 2015 LEEDuser Expert 8431 Thumbs Up

You'll need to make a better argument than that if you want to exclude the space.
"they" - how many people? How long are they in there? How often?

You need to prove that the space is not "regularly occupied". The definition of regularly occupied is an area "where workers are seated or standing as the work inside a building". If it is part of someone's regular job to spend time inside this room it is "regularly occupied" and must be included.

Post a Reply
0
0
Laura Charlier LEED Services Director Group14 Engineering
Oct 29 2015
LEEDuser Member
542 Thumbs Up

ASHRAE 55-2013

Does anyone know if is OK to adhere to ASHRAE 55-2013 instead of ASHRAE 55-2004?

Thanks!

1
1
0
Lindsay Austrom Mechanical Engineer, Stantec Oct 29 2015 LEEDuser Member 718 Thumbs Up

LEED InterpretationLEED Interpretations are official answers to technical inquiries about implementing LEED on a project. They help people understand how their projects can meet LEED requirements and provide clarity on existing options. LEED Interpretations are to be used by any project certifying under an applicable rating system. All project teams are required to adhere to all LEED Interpretations posted before their registration date. This also applies to other addenda. Adherence to rulings posted after a project registers is optional, but strongly encouraged. LEED Interpretations are published in a searchable database at usgbc.org. #10416 allows ASHRAE Standard 55-2013 to be used for both LEED 2009 and LEED v4. I'm in Canada, and there is a similar interpretation (CIRCredit Interpretation Ruling. Used by design team members experiencing difficulties in the application of a LEED prerequisite or credit to a project. Typically, difficulties arise when specific issues are not directly addressed by LEED information/guide #859) that allows LEED Canada projects to adopt more recent versions of ASHRAE standards and applicable addenda for any credit.

Post a Reply
0
0
SAMY Chamy Enginneer T&T Green
Aug 31 2015
Guest
155 Thumbs Up

Method to Achieve Thermal - Comfort for Ventilated Area

Project Location: India

Hai Everyone:-

Our project is sewing factory It is not fully conditioned (A/C & Ventilation)

1.A/c for Office area
2.Fans (Exhaust, Fresh air, HVLS fans) for Production area

We use HVLS fans for lieu of A/c

Is it possible to attend this credit using HVLS fans in Ventilated Areas

HVLS fans are Circulating fans are not

1
3
0
Christopher Schaffner Principal & Founder, The Green Engineer, Inc. Dec 11 2015 LEEDuser Expert 8431 Thumbs Up

It sounds like you might have a hard time complying. What are the temperature and humidity conditions in the production area?

2
3
0
SAMY Chamy Enginneer, T&T Green Jan 05 2016 Guest 155 Thumbs Up

Temperature is about 31 deg C and above and MET rate is 2+

Is it possible to get this credit using Design alternative (MET - above 2)

3
3
0
Christopher Schaffner Principal & Founder, The Green Engineer, Inc. Jan 25 2016 LEEDuser Expert 8431 Thumbs Up

31 C = 88 deg F. That's warm. With a MET rate of 2 I don't see how you can possibly comply. What you have is a literal sweat shop.

Post a Reply
0
0
Hieu Huynh Environmental Engineer, LEED AP BD+C
Aug 30 2015
Guest
124 Thumbs Up

ASHRAE 55 - apartment

Project Location: Vietnam

My project has apartments and penthouses on the top. Engineers design VRF with thermostat and residents can control their comfort thermally. I'm wondering how to document for this credit: do I just need to write a narrative that thermostat is available in every room and residents can control air speed, humidity, temperature to match their clothes and activities in the room so resident can have the best thermal comfort. Or I have to show PMV/PPD result for residents. If I have to do so, I will use thermal calculation tool for appartment as a whole or for every single room (bedroom, living room, kitchen room.

Thank you

1
1
0
Christopher Schaffner Principal & Founder, The Green Engineer, Inc. Dec 11 2015 LEEDuser Expert 8431 Thumbs Up

You should be able to comply. Either do a calc for a typical unit, or show that the MET rate allows you to use the "standard" comfort zone, and that the VRFs can meet temperature and humidity requirements.

Should also document the air speed - VRFs can be "blowy"

Post a Reply
0
0
Magda Aghababyan CEO Co-Energi (Pvt) Ltd.
Aug 05 2015
LEEDuser Member
891 Thumbs Up

Naturally ventilated open cafeteria

Dear all,

We have a fully naturally ventilated open cafeteria (No walls, only roof mounted on top of columns) that is occupied only for max about 2 hrs a day during 1hr lunch break and two tea breaks.

Do you think we should include this space in thermal comfort documentation or can we exclude it due to very low usage?

1
3
0
Cam Fitzgerald Energy Engineer, 7group Aug 05 2015 Guest 592 Thumbs Up

Magda,

You are correct that this area may be excluded, but not for the stated reason. As described, the cafeteria is not an interior so ASHRAE 55-2004 does not apply. Section 2.3 states, "This standard specifies thermal environmental conditions...in indoor spaces designed for human occupancy..." I suggest you identify the space as exterior, explain the intended use and occupant expectations for an exterior cafeteria and this should satisfy the intent of the credit as well as the reviewer.

2
3
0
Magda Aghababyan CEO, Co-Energi (Pvt) Ltd. Aug 07 2015 LEEDuser Member 891 Thumbs Up

Thank you very much.
So how do you define an interior space? Have you come across any standard definition or is it a subjective judgement? For example if we have half walls instead of no walls at all, does that become an interior space? Or if we have 3 sides fully open with no walls and one side has a wall with standard window, is that an interior space or exterior space?

3
3
0
Cam Fitzgerald Energy Engineer, 7group Aug 07 2015 Guest 592 Thumbs Up

Each of the ASHRAE standards has a definitions section (Section 3) and typically words defined in this section are italicized. There is no definition for interior or indoor space in either ASHRAE 55 or 62.1, but 90.1 defines a space as a fully y enclosed space. Without walls, the area is not a space. Your description seems to align with what I would call a pavilion (with or without the knee walls) which is definitely exterior space. If there were folding solid doors that could be open, the space would be considered to be interior and you would have to include the space. If the doors were only there for security purposes during unoccupied periods, you could argue that the space is not enclosed when occupied.

Post a Reply
0
0
Zonda E. Team Zonda Engineering
Jul 30 2015
LEEDuser Member
113 Thumbs Up

Open office with Displacement ventilation and Chilled beams

Hi there, I'm working on a office project with Chilled beams and Displacement ventilationA system in which air slightly cooler than the desired room temperature is introduced at floor level and is lifted up by warmer air to exhaust outlets at the ceiling, increasing air circulation and removal of pollutants.. We are planning to do CFD simulations to analyse radiant temperature asymmetry , drafts vertical air temperature difference, etc. Would this be enough to document compliance with this credit?
Regards,
Santiago.

1
1
0
Christopher Schaffner Principal & Founder, The Green Engineer, Inc. Dec 11 2015 LEEDuser Expert 8431 Thumbs Up

The CFD will show temperature and air speed, but you also need to show that those conditions fall in the comfort zone based on activity and clothing expected.

Post a Reply
0
0
Leanne Niu
Jul 28 2015
LEEDuser Member
44 Thumbs Up

n/a

Project Location: China

I am dealing with a complex commercial center containing a indoor ski center and a ice rink, which clearly fall outside of the comfortable zone of ASHRAE 55. The feedback from GBCI required us to provide DESIGN strategies to improve thermal comfort and meet the intent of this credit. Does anybody know any design strategies that can be applied to ski center and ice rink?

Many thanks!!

1
2
0
Cam Fitzgerald Energy Engineer, 7group Jul 28 2015 Guest 592 Thumbs Up

Design recommendations for ice rinks are included in the 2015 ASHRAE Applications Handbook, Chapter 5 (as well as earlier versions), but indoor ski centers seem be too new/uncommon to have standard design recommendations. However, it would seem reasonable that the same criteria (or similar) would apply for both since they depend on keeping the space cold enough to maintain snow/ice and the occupants have an expectation of cold conditions within the space. Describing how the design aligns with the recommendations in the handbook or similar generally accepted standard should suffice. Also LEED InterpretationLEED Interpretations are official answers to technical inquiries about implementing LEED on a project. They help people understand how their projects can meet LEED requirements and provide clarity on existing options. LEED Interpretations are to be used by any project certifying under an applicable rating system. All project teams are required to adhere to all LEED Interpretations posted before their registration date. This also applies to other addenda. Adherence to rulings posted after a project registers is optional, but strongly encouraged. LEED Interpretations are published in a searchable database at usgbc.org. 10279, although not specifically related to your issue touches on spaces that are not generally comfort conditioned. Keep in mind that different explanations may be required for spectator areas; the activity level is different and often radiant heat is provided for additional spectator comfort.

2
2
0
Scott Bowman LEED Fellow, Integrated Design + Energy Advisors, LLC Aug 01 2015 LEEDuser Expert 8077 Thumbs Up

I agree with Cam that first looking for guidance from ASHRAE on what would be the standard of care for that kind of application. From personal experience with ice rinks or hockey arenas, it is all about humidity control. This is both for the ice and the spectators. Radiant heat works to help around the outside of the ice, but you have to control the humidity to feel comfortable.

Post a Reply
0
0
Chen Jin
Jul 27 2015
Guest
13 Thumbs Up

Improving thermal comfort for ski center and ice rink

Project Location: China

I am dealing with a complex commercial center that contains a ski center and a ice rink, which clearly fall outside of the comfortable zone of ASHRAE 55. The feedback from GBCI requires us to provide DESIGN strategies to improve thermal comfort and meet the intent of this credit. Does anybody know any design strategies that can be applied to ski center and ice rink?
Many thanks!!

Post a Reply
0
0
Annalise Reichert LEED Project Coordinator Environmental Building Strategies
Jun 16 2015
LEEDuser Member
248 Thumbs Up

ASHRAE 55 Compliance in Dubai

Project Location: United Arab Emirates

I am working on a project in Dubai, the design engineer has performed a psychrometric analysis using 46.0°C (DB) and 29°C (WB) for climatic design cooling conditions. The project space is cooling only, as there are no heating requirements in Dubai. How would this be documented on the LEED IEQc7.1 form? Would we use the dry bulb or wet bulb temperature for the cooling climatic design condition? Do we leave the heating design condition field blank, and write a narrative explaining the extreme climate where the project is located?

1
3
0
Jens Apel Jun 17 2015 LEEDuser Member 1227 Thumbs Up

In a current project in Nigeria there's no heating requirement. We filled the cooling design condition in the heating section as well and commented this in special circumstances.This was ok for the reviewer.

2
3
0
Cam Fitzgerald Energy Engineer, 7group Jun 17 2015 Guest 592 Thumbs Up

The temperature that should be entered is the Dry Bulb temperature. A brief narrative including the average low temperature should confirm that no heating is required.

3
3
0
Annalise Reichert LEED Project Coordinator, Environmental Building Strategies Jun 17 2015 LEEDuser Member 248 Thumbs Up

Thank you for the feedback Jens and Cam!

Post a Reply
0
0
Lew Bonadies Vice President, Operations, LEED AP O+M Sol design + consulting
Jun 01 2015
LEEDuser Member
232 Thumbs Up

Wedding Hall with Dance space Design for Credit 7.1 & 7.2

Project Location: United States

We wish to pursue the credits IEQ 7.1 & 7.2 , the space is auditorium seating with a dance floor for Wedding .(Area - 5300 sq ft , Occupancy 370 People), having office spaces on other floors . Location - Cincinnati Ohio
1. What MTR should to be assumed .? Not sure of the % time for standing, seating and dancing. My MTR is going above 2.0, How to show the thermal comfort in that case.

Post a Reply
0
0
Panupant Phapant SCG Cement - Building Materials Co.,Ltd.
Jan 27 2015
LEEDuser Member
366 Thumbs Up

Acceptable thermal conditions in naturally conditioned spaces

Project Location: Thailand

There is a cafeteria where the HVAC designer of record intends to have it naturally conditioned. According to ASHRAE 55-2004, naturally conditioned spaces must be equipped with operable windows that open to the outdoors and are readily adjustable by the occupants of the space.

The cafeteria in question is equipped wtih operable windows. Nevertheless, the resultant indoor operative temperature will likely be beyond the acceptable band in figure 5.3 of the standard.

Is supplemental evaporative cooling, which counts chiefly on fans, together with evaporation effect of water, construed as a viable alternative for naturally conditioned spaces?

Thank you very much in advance.

Post a Reply
0
0
Leanne Niu
Dec 03 2014
LEEDuser Member
44 Thumbs Up

Can Ice rink and Ski centre be excluded

Project Location: China

Recently, i am working for a complex commercial project including a ice rink and a ski centre.
These two spaces are acturally very special, whether we can exclude them when we consider thermal comfort ?
Thanks!

1
3
0
Scott Bowman LEED Fellow, Integrated Design + Energy Advisors, LLC Dec 12 2014 LEEDuser Expert 8077 Thumbs Up

Leanne, to my knowledge there is no exclusions in the credit, even though ASHRAE 55 has definite limits. So if the space falls outside of ASHRAE, then you must demonstrate comfort in some other way, either by standard of care, studies that might substantiate conditions, or something else. You might find some industry standard that addresses what the standard of comfort is. However, this is not a sure thing at all.

But short answer is no, you cannot exclude any space to get the credit.

2
3
0
Kathryn West LEED AP BD+C, O+M, Green Globes Professional, Guiding Principles Compliance Professional, JLL Dec 12 2014 Guest 5766 Thumbs Up

Maybe use this and build a custom ensemble with very high CLO ( thick jacket, long johns, etc.) http://smap.cbe.berkeley.edu/comforttool

3
3
0
Kathryn West LEED AP BD+C, O+M, Green Globes Professional, Guiding Principles Compliance Professional, JLL Dec 12 2014 Guest 5766 Thumbs Up

I think with high CLO and high MET you can be comfortable even in cold areas. This tool might help make the case to the LEED reviewers but it only goes down to dry bulb temperatures of 10 degrees C/ 50 degrees F. http://smap.cbe.berkeley.edu/comforttool A mechanical engineer can probably get more into the logic behind all that. Definitely provide a written explanation of your strategy with your preliminary LEED design submittal. We've had to provide a lot of back up data on our projects with Natatoriums because of the unique space conditions.

Post a Reply
0
0
Mike Oliva
Nov 24 2014
LEEDuser Member
86 Thumbs Up

Floor Diffusers

I'm looking for clarification on how to handle air speed for floor diffusersIn an HVAC context, diffusers disperse heating, cooling, or ventilation air as it enters a room, ideally preventing uncomfortable direct currents and in many cases, reducing energy costs and improving indoor air quality (IAQ). In light fixtures, diffusers filter and disperse light. at the perimeter of a large lobby space. At these locations the air speed will be high but the majority of the lobby space and where most occupants are will be low velocity. Should the air velocity be based more on this area w/ most traffic/occupants rather than at the perimeter?

Also, there are large amounts of glazing and not sure if calculation of mean radiant temperature is typically required in such cases?

1
1
0
Scott Bowman LEED Fellow, Integrated Design + Energy Advisors, LLC Nov 27 2014 LEEDuser Expert 8077 Thumbs Up

In lobbies it is often quite difficult to specify where people will be. I would position them in the most typical positions for the evaluation. This will then allow you to determine the velocity of the air where they are.

Radiant mean temperature is absolutely required, which is why you have most likely positioned the diffusersIn an HVAC context, diffusers disperse heating, cooling, or ventilation air as it enters a room, ideally preventing uncomfortable direct currents and in many cases, reducing energy costs and improving indoor air quality (IAQ). In light fixtures, diffusers filter and disperse light. to be at the perimeter. So, you will have to evaluate that issue, and air is often difficult to provide this comfort. We have seen radiant floors used in heating climates to great affect in these kinds of spaces where more conventional radiation would not be allowed for aesthetic reasons. While I have not gotten to do this myself, I think the same floor tubing could be used to provide a cool slab in summer too, but you have to be very careful to control the temperature to stay above the dew point of the air. I have heard of this working in coordination with the air quite well, just not on a project that I have been directly involved with.

Post a Reply
0
0
André Harms Ecolution Consulting
Oct 24 2014
LEEDuser Member
108 Thumbs Up

Ice-cream factory with sub-zero working conditions

Project Location: South Africa

Good day,

The project I'm working on is an ice-cream factory which will have staff working for short spells (but more than 15min) in spaces cooled to down to -40C. This is obviously outside the range of ASHRAE 55-2004 but I would like to know if it is still possible to get compliance if local regulations regarding workspace environments are met?

The project is in South Africa and there is a local regulation called the "Environmental regulation for workplaces" which is enforced by the Department of Labour. It specifies the amount of time that staff may work in sub-zero temperatures and the type of protective clothing that must be worn.

Do you know if this credit is achievable?
If so, how should it be done?

Many thanks for any advice you can offer.

1
3
0
Scott Bowman LEED Fellow, Integrated Design + Energy Advisors, LLC Oct 25 2014 LEEDuser Expert 8077 Thumbs Up

Interesting question. This would definitely deserve a conference call with the reviewer team even before you submit. I know of cases where there are situations that ASHRAE 55 does not apply, and GBCI has accepted alternative ways or practices to show compliance. Your logic seems good, but having that conference call would be the best way to move forward.

2
3
0
Cam Fitzgerald Energy Engineer, 7group Oct 27 2014 Guest 592 Thumbs Up

You should also take a look at LEED InterpretationLEED Interpretations are official answers to technical inquiries about implementing LEED on a project. They help people understand how their projects can meet LEED requirements and provide clarity on existing options. LEED Interpretations are to be used by any project certifying under an applicable rating system. All project teams are required to adhere to all LEED Interpretations posted before their registration date. This also applies to other addenda. Adherence to rulings posted after a project registers is optional, but strongly encouraged. LEED Interpretations are published in a searchable database at usgbc.org. 10279. Although it is primarily about spaces with elevated metabolic rates, it touches on compliance for spaces that are not normally comfort conditioned and could be helpful.

3
3
0
Christopher Schaffner Principal & Founder, The Green Engineer, Inc. Dec 19 2014 LEEDuser Expert 8431 Thumbs Up

Short answer is that I think you cannot meet the credit.

Post a Reply
0
0
Vassil Vassilev Manager Termoservice OOD
Aug 28 2014
LEEDuser Member
199 Thumbs Up

IEQc7.1 compliance problems

Dear All,
We are looking for some advices on thermal comfort compliance upon IEQc7.1.
Our project is an industrial building with office and production spaces located in climate zoneOne of five climatically distinct areas, defined by long-term weather conditions which affect the heating and cooling loads in buildings. The zones were determined according to the 45-year average (1931-1975) of the annual heating and cooling degree-days (base 65 degrees Fahrenheit). An individual building was assigned to a climate zone according to the 45-year average annual degree-days for its National Oceanic and Atmospheric Administration (NOAA) Division. 6. There are heating and ventilation systems provided for the winter. For the summer it is designed that these ventilation systems to operate based on Outdoor air (100%) only. No cooling coils are provided. All spaces have operable windows, but without any control on their functioning.
While applying the ASHRAE Std. 55- 2010 Comfort Tool software, we are facing the following problems:
1.) Since there is no cooling system for the summer, the spaces presumably are understood as naturally conditioned. However we cannot use the 5.3. Optional Method as the building doesn’t meet all necessary requirements – the lowest outdoor temperature is -15.9 F and we have activities with MET>1.3. The question for this issue is: For the summer period, what space temperature should we enter in the Comfort Tool software and what MRT value?
2.) In the production spaces, the metabolic rate is greater than 2.0 MET. Is there some trade-off for these type of spaces and should we present the program output for them, although they don’t meet the requirements of the standard?
Thanks.

1
2
0
Scott Bowman LEED Fellow, Integrated Design + Energy Advisors, LLC Oct 25 2014 LEEDuser Expert 8077 Thumbs Up

I hate to be a downer, but if you do not have cooling or active natural ventilation, then you cannot show compliance to ASHRAE 55. There are some methods to show intent (such as exercise areas where the MET rate is higher than ASHRAE covers), but if you are not going to do natural ventilation, then I would not pursue this credit.

2
2
0
Noriko Yasuhara Woonerf Inc. Nov 10 2014 LEEDuser Member 2572 Thumbs Up

Hi Vassil,

For projects with MET over 2.0 you may use LEED InterpretationLEED Interpretations are official answers to technical inquiries about implementing LEED on a project. They help people understand how their projects can meet LEED requirements and provide clarity on existing options. LEED Interpretations are to be used by any project certifying under an applicable rating system. All project teams are required to adhere to all LEED Interpretations posted before their registration date. This also applies to other addenda. Adherence to rulings posted after a project registers is optional, but strongly encouraged. LEED Interpretations are published in a searchable database at usgbc.org. 10279. The interpretation aligns with the "Use of Metabolic rate Data" on ASHRAE 55 2004 's page 17.

Post a Reply
0
0
Ghaith Moufarege
Aug 26 2014
LEEDuser Member
9280 Thumbs Up

Air diffuser for an office building

Dear All,

I have a couple of questions regarding this credit:

a) How can I convert the air velocity at the diffuser outlet to the air velocity reaching the occupant, knowing that an open plan office will have several desks and some occupants will be closer to the diffuser than others? Do I take average location in the middle of the room?
b) The diffusersIn an HVAC context, diffusers disperse heating, cooling, or ventilation air as it enters a room, ideally preventing uncomfortable direct currents and in many cases, reducing energy costs and improving indoor air quality (IAQ). In light fixtures, diffusers filter and disperse light. for my project are located just below the ceiling level (around 9 feet above floor) whereas I need to report the air speed at the seating level of occupants (3 feet above floor). Do you think diffuser manufacturers will have these values / conversion formulas?
c) The Mechanical Engineer confirmed that this is a typical project with a typical HVAC design strategy. Can I assume that the air speed is 40 feet per minute (as a default value) without further documentation to the USGBC, given that they don't ask for any documentation?

Thanks!
Omar

1
2
0
Julia Weatherby President, Weatherby Design & Co. Engineers Aug 27 2014 LEEDuser Member 2281 Thumbs Up

Omar-

For a typical project in an office building with typical HVAC design, yes, I believe it is probably acceptable to presume the air speed is 40 fpm.

If you want to analyze it more completely, then you can read the introductory information in a diffuser catalog like Titus to evaluate air flow patterns and throws / air velocity at various distances, heights, and supply air temperatures.

2
2
0
Kathryn West LEED AP BD+C, O+M, Green Globes Professional, Guiding Principles Compliance Professional, JLL Jun 04 2015 Guest 5766 Thumbs Up

Ghaith,

What ended up happening on your project? Did you have to provide justification for the 40 fps?

Post a Reply
0
0
Adam Kingsbury
Jul 21 2014
Guest
15 Thumbs Up

IEQc7.1, MET and CLO, and Acceptable Alterations

I am completing documentation for a dormitory that has a Summer/Winter operative temperature of 75/70, respectively. RH is 55, air velocity is 40 FPM.

Rooms with a 1.2 MET or lower are all noncompliant (or 1.2 MET and .5 CLO, which is also noncompliant). In order to comply, it appears my only options are to raise the CLO level or the operative temperature of the space (I think I can't change the activity level since, no matter what, the space use remains the same). Here are my questions:

1. Provided I supply a narrative stating clothing assumptions and these clothing assumptions are logical (not requiring occupants to wear a jacket in the summer, for instance) using the values provided for garments in ASHRAE 55, can I simply raise the CLO levels in the spaces (or come up with a 'standard' project CLO that passes in all spaces and I can then apply to each space for each season?)?

2. If I adjust the operative temperature of the space I'm assuming that if, for instance, I am cooling below the project setpoint we have designed to in order to pass, would I be required to provide calculations proving that the extra cooling required is achievable by the system and equipment provided in the space? The same question would go for spaces where the temperature required for comfort exceeds the design heating setpoint for the project.

3. Is it possible to adjust both values in order to change each as little as possible and remain as close to the ASHRAE standard number and the design setpointsSetpoints are normal operating ranges for building systems and indoor environmental quality. When the building systems are outside of their normal operating range, action is taken by the building operator or automation system. in the project? Would each assumption for CLO in the summer and winter have to be a global change, or can each space use a different CLO level even though they all exist within the same building?

1
1
0
Neetu Singh Building Performance Analyst, The Green Engineer Aug 01 2014 LEEDuser Member 41 Thumbs Up

Clo and MET level will be different for different space types. Adjusting these numbers based on a broad division of space types (classrooms, living units, kitchen,lounge/cafeteria, etc.) with a logical explanation is acceptable. Having the same MET level for the entire building is not an IEQc7.1 requirement.

Also, confirm the airspeed for the project as per design. 40 fpm is an upper threshold to ensure user comfort per ASHRAE 55 with exceptions for elevated airspeeds. However, it is not mandatory to use the 40 fpm in your calculations.

If you have to show compliance through different operative temperatures than what the design setpointsSetpoints are normal operating ranges for building systems and indoor environmental quality. When the building systems are outside of their normal operating range, action is taken by the building operator or automation system. are, I believe you will have to provide calculations confirming that the system is able to maintain those temperatures.

Post a Reply
0
0
Courtney Royal, LEED AP BD+C Sr. Sustainability Consultant Taitem Engineering
Jul 15 2014
LEEDuser Member
1556 Thumbs Up

how to demonstrate compliance with natural ventilation in apts?

All other regularly occupied spacesRegularly occupied spaces are areas where one or more individuals normally spend time (more than one hour per person per day on average) seated or standing as they work, study, or perform other focused activities inside a building., besides the residential apartments, have been entered correctly using the thermal comfort tool. These spaces are mechanically ventilated. However, we received the following review comment:

"Please ensure all space types, namely the residential units, in the project building have been addressed in Table IEQc7.1-1 and that supporting documentation demonstrating compliance with ASHRAE Standard 55 has been provided."

This is my first time working on this credit and I am unaware how to demonstrate natural ventilation in the apartments using the thermal comfort tool. Is this possible? The apartments only have exhaust only spaces, such as the kitchen and bathroom.
thanks!

1
4
0
Julia Weatherby President, Weatherby Design & Co. Engineers Jul 16 2014 LEEDuser Member 2281 Thumbs Up

Hi, Courtney-

I'm not sure why natural vs. mechanical ventilation would matter for the Thermal Comfort Design credit. The thermal comfort tool deals with temperature, humidity, etc. as well as the activity level and amount of clothing worn by the occupants. I believe you should be able to apply the thermal comfort tool in residential spaces without much difference from the way it is applied to your mechanically ventilated spaces. This credit has to do with mechanical conditioning, not mechanical ventilation. As long as you have heating and air conditioning in the residential units, it seems likely to me that you would be able to comply with the Thermal Comfort Design credit.

2
4
0
Scott Bowman LEED Fellow, Integrated Design + Energy Advisors, LLC Jul 17 2014 LEEDuser Expert 8077 Thumbs Up

I agree with Julia. The thermal standard is not coupled to the ventilation standard.

3
4
0
Courtney Royal, LEED AP BD+C Sr. Sustainability Consultant, Taitem Engineering Jul 18 2014 LEEDuser Member 1556 Thumbs Up

Thank you both, Julia and Scott. This is very helpful. The reason I was thinking ventilation had something to do with credit documentation is because the credit form asks you to select if the building is mechanically or naturally ventilated so I assumed it needed to be accounted for. Why does this form request this information then?
Thanks!

4
4
0
Julia Weatherby President, Weatherby Design & Co. Engineers Jul 18 2014 LEEDuser Member 2281 Thumbs Up

That's a good question. I think the language in the v. 2009 reference guide is a bit muddled about the difference between natural ventilation and natural conditioning. There is a reference to Section 5.3 of ASHRAE 55-2004, but that section deals with natural conditioning, not natural ventilation. I think as long as you have mechanical *conditioning*, that for version 2009 the natural vs. mechanical ventilation should not matter. This is especially true in a residence where the required amounts of ventilation are tiny. I suppose a reviewer might question the impact on comfort if one is depending on natural ventilation for a high occupancy space, but that would be more applicable in a non-residential usage and also may come into play more in LEED v4 from what I have heard.

Post a Reply
0
0
Mayank Bhatnagar
Jul 07 2014
Guest
26 Thumbs Up

Hi, We have a project where

Hi,
We have a project where design mandates space usage as manufacturing facility with met rates of 2.2, clo values of 0.6 and air velocity of 120 ft/min or 0.6m/sec. Well, ASHRAE 55-2004 mandates that PMV approach cannot be applied for air speeds higher than 40ft/min (0.2 m/sec) and refers Section 5.2.3 (Elevated Air Speed) for compliance. Unfortunately, section 5.2.3 also limits clo values (0.5-0.7) and sedentary activity (1.0 to 1.3 met rates). It appears, both PMV and Section 5.2.3 approach do not apply.

So, how do we demonstrate thermal comfort compliance for scenario where we have high metabolic activity (2.2) and high air speed (120 ft/min or 0.6 m/sec)?
LEED InterpretationLEED Interpretations are official answers to technical inquiries about implementing LEED on a project. They help people understand how their projects can meet LEED requirements and provide clarity on existing options. LEED Interpretations are to be used by any project certifying under an applicable rating system. All project teams are required to adhere to all LEED Interpretations posted before their registration date. This also applies to other addenda. Adherence to rulings posted after a project registers is optional, but strongly encouraged. LEED Interpretations are published in a searchable database at usgbc.org. 10279 has some interesting discussion as well.
http://in.usgbc.org/leed-interpretations?keys=10279

1
1
0
Tristan Roberts LEED AP BD+C, Editorial Director – LEEDuser, BuildingGreen, Inc. Jul 26 2014 LEEDuser Moderator

Mayank, the LEED InterpretationLEED Interpretations are official answers to technical inquiries about implementing LEED on a project. They help people understand how their projects can meet LEED requirements and provide clarity on existing options. LEED Interpretations are to be used by any project certifying under an applicable rating system. All project teams are required to adhere to all LEED Interpretations posted before their registration date. This also applies to other addenda. Adherence to rulings posted after a project registers is optional, but strongly encouraged. LEED Interpretations are published in a searchable database at usgbc.org. you found is a good one. I would also direct you to the guidance shown in the FAQ above on the LEEDuser website (under Bird's Eye View—content for members).

Post a Reply
0
0
Stella Stella
Jun 16 2014
Guest
480 Thumbs Up

Increasing the indoor operative temperature

Hi, we are doing a project in South east Asia for LEED NC. We are planning to maintain the indoor operative temperature of the building at 77 deg F as against 75 deg F as per ASHARE thermal comfort design.
We are doing so; as the other existing buildings of the same organization has been maintaining the indoor temperature as 77 deg F for the past one year in response to save energy and have not received any complaints from the occupants. The organization is also planning to make this as their company’s policy in order to conserve energy. Will this be compliant for the IEQ C 7.1 ? What would be the supporting documents that would be required to substantiate the same?

1
1
0
Julia Weatherby President, Weatherby Design & Co. Engineers Jun 24 2014 LEEDuser Member 2281 Thumbs Up

I suggest you try using either the ASHRAE comfort tool software (available at ashrae.org for about $99 last I checked) or the CBE comfort tool available free. By entering a lower clothing insulation level (clo) and other variable values more typical of southeast Asia, you may find that 77 degrees does indeed fall within the comfort window.

From posts below:
"The CBE Thermal comfort tool also will calculate PPD/PMV. Although it gives the warning "Does not comply with ASHRAE Standard 55-2010
↳ Metabolic rates below 1.0 or above 2.0 are not covered by this Standard"
it still performs the calculation."

Available free at http://cbe.berkeley.edu/comforttool/

I used the CBE Thermal Comfort Tool for documentation on a project after seeing it referenced here. It seems to work best in Google's Chrome web browser.

Post a Reply
0
0
Nena Elise
Jun 12 2014
LEEDuser Member
4437 Thumbs Up

Using ASHRAE Figure 5.2.1.1.

On past project we have been told: Please note that Figure 5.2.1.1 can only be used when air speeds are less than 40 feet per minute.

We have a project with air speeds at 40 fpm. So does that mean we can't use Figure 5.2.1.1.? Or is it just above 40 fpm? Thanks!

1
5
0
Cam Fitzgerald Energy Engineer, 7group Jun 13 2014 Guest 592 Thumbs Up

The air speed cannot be greater than 40 fpm. This is stated in the third paragraph of Section 5.2.1.1.

2
5
0
serge sidoroff Penicaud Green Building Jun 13 2014 LEEDuser Member 201 Thumbs Up

No : this § states that the figure 5.2.1.1 does apply when the air speed is below 40fpm. Section 5.2.3 states explicitely that "this standard allows elevated air speed to be used ... under certain conditions", whereas section 5.2.3.1 explains how to deal with these conditions. I encourage you to download the addendum b of the 2007 version or to buy the 2013 version, since all this parts have been deeply updated.

3
5
0
Nena Elise Jun 13 2014 LEEDuser Member 4437 Thumbs Up

So we can or can't use Figure 5.2.1.1 for air speeds of 40 fpm?

4
5
0
serge sidoroff Penicaud Green Building Jun 16 2014 LEEDuser Member 201 Thumbs Up

It will depend on the version of the standard you want to use and to the interpretation you will make. Shortly :
- 2010 version without addendum b : "figure 5.2.1.1 specifies comfort zone for environments ... and where the air speeds are not greater than 40 fpm"
My understanding is that 40 fpm complies with this statement.
- 2010 version with addendum b : the statement "and where the air speeds are not greater than 40 fpm" is deleted.
- 2013 version : (§5.2.1 becomes §5.3.1) "Average air speed greater than 40 fpm requires the use of section 5.3.3".
My understanding is that 40 fpm does not require the use of section 5.3.3 (and therefore allows to use the figure 5.2.1.1, renamed 5.3.1 in the 2013 version)
USGBC allows you to use the standard "with errata but without addenda". My opinion is that you can choose to use errata if it is better for you, but then you will have to use all of them (which is rather handsome for the 55.2-2010 ...) or it's more simple to use the 2013 version.
I hope it will help

More replies to "Using ASHRAE Figure 5.2.1.1." on next page...

Start a new LEED comment thread

Feb 11 2016
Type the characters you see in this picture. (verify using audio)
Type the characters you see in the picture above; if you can't read them, submit the form and a new image will be generated. Not case sensitive.

Copyright 2016 – BuildingGreen, Inc.