NC-2009 IEQp1: Minimum IAQ Performance

  • NC Schools IEQp1 credit reqs diagram
  • Baseline for outdoor air ventilation

    This prerequisite establishes a baseline for providing a minimum amount of outdoor air to buildings in order to maintain good indoor air quality and keep occupants comfortable and healthy. This prerequisite references ASHRAE 62.1-2007 (with errata but without addenda) and is often more stringent than local building codes, although it is not likely to entail any added costs.

    Two cases, both may be needed

    The compliance paths for mechanically ventilated and naturally ventilated spaces, Case 1 and Case 2, are somewhat different and you may need to follow both paths for the same building on a space-by-space basis. Spaces served only by natural ventilation must follow the distinct requirements set out in Case 2, even if other spaces in the same building are mechanically ventilated and are following Case 1. Mixed-mode spaces which alternate between natural or mechanical ventilation must follow the compliance path for mechanical ventilation, Case 1.

    For additions and major renovations, confirm that all ventilation systems serving the project meet the ventilation rates required by ASHRAE 62.1 2007, even if the ventilation system design itself is outside the scope of the project. If base building systems do not meet the standard’s requirements, you will need to either increase ventilation rates to comply or provide detailed analysis documenting the constraints and explaining why the base building systems cannot be upgraded.

    There’s some confusion in this language on whether mixed-mode refers to a ventilation design with both natural and mechanical ventilation all the time, which needs to be divided up to show compliance, or to a system where either is optional, in which case the worst-case design conditions are for when only the mechanical systems are used and window are shut.

    Any ventilation systems serving the project are covered

    Commercial interior projects will need to confirm that any ventilation systems serving the project meet the ventilation rates required by ASHRAE 62.1-2007, even if the ventilation system design itself is outside the scope of the project. If base building systems cannot be modified to meet the standard’s requirements, you will need to provide detailed analysis documenting the constraints and explaining why the base building systems cannot be upgraded. Systems must be able to provide at least 10 cfm per person to meet this prerequisite.

    ASHRAE 62.1: 2007 vs. 2004

    The 2007 edition of ASHRAE 62.1 combines  62.1-2004 and the eight approved and published addenda to the 2004 edition. The new edition does the following:

    • Clarifies dehumidification analysis requirements and offers exceptions to the 65% relative humidity limit requirement and to the net-positive intake-airflow requirement.
    • Corrects occupant category inconsistencies and provides additional information for several occupancy categories.
    • Updates references and clarifies the text particularly as related to subjective evaluation of air quality.
    • Updates information to be consistent with the U.S. EPA National Ambient Air Quality StandardsThe level of pollutants prescribed by regulations that are not to be exceeded during a given time in a defined area. (EPA).
    • Includes a new  appendix that summarizes the documentation requirements in the body of the standard, thus providing a single point of reference for users.
    • Requires proper design for buildings that contain both ETSEnvironmental tobacco smoke (ETS), or secondhand smoke, consists of airborne particles emitted from the burning end of cigarettes, pipes, and cigars, and is exhaled by smokers. These particles contain about 4,000 compounds, up to 50 of which are known to cause cancer. and ETS-free areas, by requiring classification of areas based on expected presence of ETS, pressurization of ETS-free areas, separation of ETS and ETS-free areas, and cautionary signage for ETS-areas.
  • FAQs for IEQp1

    A building has fan-assisted ventilation and no mechanical cooling system. Does this qualify as natural ventilation?

    If the building relies on the fans for daily ventilation, it is considered a mechanically ventilated building.

    Is outdoor air quality testing required in a space using natural ventilation?

    Testing in naturally ventilated spaces is not required per 62.1-2007 Sections 4-7 if the outdoor air quality adequately meets 62.1-2007, Table 4-1.

    For a space designed to be naturally ventilated, can operable windows or vents be used to satisfy the 62.1-2007 requirements?

    Both operable windows and vents can be used, but only the operable area within those elements can be counted towards the minimum percentage (4%) of net occupiable area.

    What options are available to projects outside the US to meet this prerequisite?

    Local codes may be used to meet the prerequisite if the project team can show equivalency with Sections 7 through 7 of ASHRAE Standard 62.1-2007. Projects outside the US can now also choose to comply with the minimum requirements of Annex B of CEN Standard EN 15251:2007 Ventilation for Nonresidential buildings.

    Can LEED 2009 projects elect to follow ASHRAE 62.1-2010 for this prerequisite?

    Teams may choose to substitute ASHRAE 62.1-2010, Sections 6.4.1-6.4.2, for ASHRAE 62.1-2007, Section 5.1.1, to document compliance with IEQp1 for naturally ventilated buildings. ASHRAE 62.1-2010 adds geometric requirements that extend the allowed naturally ventilated floor area based on ceiling height and opening configuration.

    Which units should be included in the calculations for this prerequisite?

    For CI projects, calculations must be done at the system level for any AHU1.Air-handling units (AHUs) are mechanical indirect heating, ventilating, or air-conditioning systems in which the air is treated or handled by equipment located outside the rooms served, usually at a central location, and conveyed to and from the rooms by a fan and a system of distributing ducts. (NEEB, 1997 edition) 2.A type of heating and/or cooling distribution equipment that channels warm or cool air to different parts of a building. This process of channeling the conditioned air often involves drawing air over heating or cooling coils and forcing it from a central location through ducts or air-handling units. Air-handling units are hidden in the walls or ceilings, where they use steam or hot water to heat, or chilled water to cool the air inside the ductwork. providing outside air to the tenant spaceTenant space is the area within the LEED project boundary. For more information on what can and must be in the LEED project boundary see the Minimum Program Requirements (MPRs) and LEED 2009 MPR Supplemental Guidance. Note: tenant space is the same as project space..

Legend

  • Best Practices
  • Gotcha
  • Action Steps
  • Cost Tip

Pre-Design

Expand All

  • Determine likely ventilation strategies during preliminary programming: natural, mechanical, or mixed-mode ventilation. This prerequisite is attainable with any of these strategies.


  • This prerequisite is paired with IEQc2: Increased Ventilation. If ventilation rates are targeted above the 30% ASHRAE requirement, projects can gain both the prerequisite and a point for EQc2. Projects pursuing IEQc2 may follow the compliance path for natural ventilation found in Chapter 2 of The CIBSE Applications Manual 10 (AM10) for both the prerequisite and for the credit.


  • Many of the strategies that contribute to meeting this prerequisite also support earning other indoor environmental quality credits and should be explored as integrated solutions. See LEEDuser's guidance on the rest of the IEQ section for ideas.


  • Natural ventilation strategies can reduce costs. Natural ventilation in particular can reduce the need for mechanical equipment as well as operational costs. Displacement ventilation, in which air is delivered at or near floor level at a low velocity, can also reduce ducting and improve equipment efficiency. In choosing a system, analyze life cycle cost tradeoffs.


  • Check local building codes to determine requirements. The project must either meet ASHRAE 62.1-2007, or local codes if they are more stringent. Since ASHRAE 62.1-2007 is often more stringent than local codes, be sure to review and be familiar with its requirements.


  • This prerequisite is not likely to require added costs.


  • Case 1: Mechanically Ventilated Spaces


  • Review the Ventilation Rate Procedure methodology in ASHRAE 62.1-2007 Section 6.2 and the associated Table 6-1.


  • ASHRAE 62.1 recognizes two procedures to prove IAQ compliance: the IAQ Procedure methodology and the Ventilation Rate Procedure. The Ventilation Rate Procedure is easier to apply and is the prescribed path for this LEED prerequisite. Documentation using the IAQ Procedure requires the quantification of contaminant source emissions rates and their reduction, and has historically not been accepted for this prerequisite because it is performance-based and difficult to compare across projects.


  • If you are pursuing IEQc5: Indoor Chemical and Pollutant Source Control, you must incorporate MERV 13 filters into your filtration system. These relatively tight filters may affect the fan power and fan sizes necessary to provide the required quantities of air. Involve the engineer early if pursuing IEQc5. 


  • Demand-controlled ventilation can greatly reduce energy use while providing large amounts of fresh air to occupants.


  • Case 2: Naturally Ventilated Spaces


  • Determine whether natural ventilation is feasible based on the project type, use, and climate.  Study the natural conditions of the site, such as prevailing wind direction, and orient the building to maximize airflow.


  • Review the prescriptive requirements for natural ventilation in ASHRAE 62.1-2007 Paragraph 5.1 (with errata but without addenda).


  • An integrated design meeting will help determine whether natural ventilation is a high priority and should be a primary driver of the design process.


  • Airflow modeling early in the design process can help teams by evaluating which space planning and envelope design strategies will create effective natural ventilation. An airflow modeling professional may add some upfront costs, while likely improving system efficiency.

 Airflow modeling can also help to determine compliance for an engineered natural ventilation system outside the prescriptive measures of ASHRAE 62.1-2007.


  • Consider the cost implications of natural ventilation. Passive strategies may reduce or eliminate the need for fans and HVAC equipment, but they may also require high quantities of operable windows and a floor plan that is conducive to passive ventilation.  Natural ventilation often requires the cooperation of occupants, to open and close windows when appropriate, for example, be sure that your project is likely to succeed in this respect.

Schematic Design

Expand All

  • Determine the required ventilation rates for indoor spaces based on occupancy and space types.  ASHRAE 62.1-2007 tables 6-1 and 6-4 list minimum requirements for particular spaces.


  • Separately evaluate each space to determine air requirements and what type of ventilation will be best.  Metabolic rate of the space activities and the occupant density are factors that determine the amount of fresh air needed in a space.  For example, exercise rooms and conference rooms require more fresh air than offices.


  • An integrated design approach among the mechanical engineer, architects, owners and occupants will facilitate design decisions that impact the HVAC design. For example, space planning decisions will impact the architectural programming of the space as well as access to natural ventilation.


  • Increasing a project’s ventilation rate brings long-term cost benefits. Good indoor air quality can lower operational costs by increasing occupants’ health and productivity as well as the value and marketability of the building.


  • For mixed-mode and naturally ventilated spaces, the mechanical engineer should calculate the outdoor airflow rate and communicate the area requirements for operable wall or roof openings to the architect.


  • The mechanical engineer begins preliminary ventilation rate calculations during project programming in order to set ventilation quality goals for particular spaces and occupancies. The area of a given multi‐zone system should be broken down by ventilation zones, and all zones within that system must meet the minimum breathing zone ventilation air requirements as per ASHRAE 62.1‐2004. For a typical office space, the mechanical design consists of multiple ventilation zones for which compliance would need to be shown on an individual basis.


  • Case 1 Mechanically Ventilated Spaces


  • For mixed-mode ventilation, zone the plan into areas—mechanically ventilated and naturally ventilated—and follow separate compliance calculations for each area.


  • Case 2 Naturally Ventilated Spaces


  • Determine the applicable floor area for operable wall or roof openings according to ASHRAE 62.1-2007 section 5.1.


  • Consider using Computational Fluid Dynamics (CFD) modeling to determine proper opening sizes and ensure proper airflow. Some energy modeling programs also have CFD analysis capabilities.


  • Expect upfront modeling fees for Computational Fluid Dynamics (CFD), but also consider the benefits of CFD modeling: a better-designed natural ventilation system that can bring short-term payback from reduced mechanical systems, and long-term operational savings.


  • At the first integrated design meeting during schematic design, develop a detailed natural ventilation strategy involving goals for windows, building orientation, space planning, use of atriums, and other access to natural ventilation. Natural ventilation systems may require a more robust and intense integrated design process, of several focused workshops analyzing several alternatives. Computer modeling may be necessary to test various design alternatives to determine which is most effective and efficient.


  • Hotel and multifamily projects may have difficulty achieving this prerequisite if they are naturally ventilated and have interior spaces that are further than 25 feet from an operable wall or roof opening. These projects might consider increased window areas, shallower floor plates, or using mixed-mode ventilation so that mechanically supplied outdoor air can support areas outside the 25-foot natural ventilation boundary.

Design Development

Expand All

  • The mechanical engineer continues to run ventilation rate calculations during the mechanical design process to inform design development and confirm compliance with this prerequisite. The ventilation rate procedure is explained in section 6 of ASHRAE 62.1-2007. See the attached 62MZ calculator.


  • Continuing to use an integrated design approach among the mechanical engineer, architects, owners and end users will facilitate design decisions that impact the mechanical design. For example, space planning decisions will impact the architectural programming of the space as well as access to natural ventilation.


  • Strategically locate air intakes for mechanical or natural ventilation systems to avoid taking in contaminants and odors like vehicle exhaust from parking lots or fumes from garbage storage areas.


  • Incorporating operable windows into the design for natural and mixed-mode ventilation can help with an additional LEED point for EAc6.1: Controllability of Systems—Thermal Comfort.


  • Case 1: Mechanically Ventilated Spaces


  • Continue running ventilation rate calculations during the mechanical design process to confirm compliance with this credit and to inform the design. The ventilation rate procedure is explained in section 6 of ASHRAE 62.1-2007. See the 62MZ calculator.


  • Implement energy recovery systems, economizers, low-pressure-drop design, and efficient fans as appropriate to support ventilation rates meeting or exceeding the referenced ASHRAE standard without compromising energy performance.


  • Avoid oversizing mechanical equipment. Oversized equipment will often increase operating costs and reduce operational efficiency. The correct equipment size will depend on a number of factors, including local climate, total building area, insulation levels, air filtration medium, number of windows and doors, and occupant comfort preferences.


  • Spaces served by the same VAV (variable air volume) controller can be grouped together in the 62MZ calculator, but grouped spaces should have similar exterior exposure. For example, you can group two perimeter spaces that share a VAV controller, but would want to separate a non-perimeter space even if it shares the same VAV controller.


  • Laboratory facilities generally require very high ventilation rates. Consider installing separate mechanical systems for lab spaces to maximize return-air mixing. Other strategies may include using a heat exchanger to capture energy from laboratory exhaust, using low-flow or variable-flow fume hoods, minimizing ventilation rates during unoccupied times, or using a dedicated outdoor air system.


  • Integrating building automation systems can control mechanical systems efficiently and maintain desired ventilation rates while minimizing unscheduled maintenance.


  • The Ventilation Rate Procedure calculation includes occupancy counts based on space types.


  • Case 2: Naturally Ventilated Spaces


  • Continue to run calculations and develop flow diagrams to inform the design process and confirm compliance. If you are using a natural ventilation modeler for the project, use the model as a tool to inform design development.


  • The calculation for operable openings will only apply to the floor area adjacent to the window—25 feet to either side and in front of the opening.


  • The surface area of window openings must, for compliance with ASHRAE 62.1, be equal to or greater than 4% of the occupied floor area that the design considers naturally ventilated. Multiple windows in aggregate can provide the operable area needed to meet the requirements.


  • In naturally ventilated multifamily buildings, air infiltration from a pressurized hallway or corridor can contribute to the Ventilation Rate Procedure calculation for areas that do not meet the requirements of ASHRAE 62.1, as long as the corridor is pressurized with outdoor air.

Construction Documents

Expand All

  • For mechanically ventilated spaces, run ventilation calculations to verify that the final design meets the minimum outside air rates equal to or exceeding the ASHRAE 62.1-2007 minimum.


  • For naturally ventilated spaces, confirm compliance with the requirements of ASHRAE 62.1-2007 section 5.1.


  • If natural ventilation strategies are integrated into the design, ensure that key elements of the natural ventilation system, such as operable windows, window actuators, controls, operable atrium elements, and solar chimneys, are not compromised during value engineering. Educate decision-makers about the natural ventilation design and the importance of maintaining all the key components. If these elements are altered in a way that compromises natural ventilation rates, the mechanical system may no longer be sized appropriately.


  • Fill out the LEED credit form and upload all supporting documents to LEED Online.


  • Use this checklist for naturally ventilated spaces prior to construction to review plans for prerequisite compliance:

    • Are all floor areas within 25 feet of an operable window?
    • Do all floor areas within 25 feet of an operable window appear have 4 ft2 of opening per 100 ft2 of floor area?
    • Is fresh outdoor air mechanically supplied and exhausted for all regularly occupied spaces beyond 25 feet of an operable window?
    • Do any corridors or entryways fall outside of these naturally or mechanically ventilated areas? If so, develop the design further to supply sufficient ventilation.

  • Use this checklist for mechanical systems prior to construction to check prerequisite compliance:

    • Using the mechanical equipment schedule, confirm that outside air is being supplied to mechanically ventilated spaces.
    • Do you have calculations showing the outside air required by ASHRAE 62.1-2007 for mechanically ventilated spaces separate from naturally ventilated spaces?
    • Do outside air rates meet or exceed the calculated ASHRAE minimums?
    • Are all regularly occupied spaces listed in the ASHRAE calculations?
    • What is the desired MERV filtration? If using a high level of ventilation to meet EQc5, has the mechanical system been sized accordingly?

Construction

Expand All

  • Coordinate the installation of ventilation systems with the project’s commissioning process.


  • Use commissioning to confirm that installed systems are providing the outside air rates specified in the design. 

Operations & Maintenance

Expand All

  • Monitor outdoor air delivery periodically to confirm that minimum ventilation rates are being maintained. Implement a maintenance program to ensure that mechanical system components are functioning properly.


  • Test all dedicated building exhaust systems including chemical areas, bathroom, shower, kitchen, and parking exhaust systems to confirm proper fan speed, voltage, control sequences, and set points as applicable. Provide operations and maintenance personnel with manuals and educate them about any atypical maintenance requirements.


  • Getting feedback on ventilation performance from occupants through surveys can help to identify potential problems that may become expensive if they go unnoticed.


  • A documented ventilation performance plan can help ensure that systems reach the expected ventilation thresholds.


  • In projects with operable windows, occupants may not know when conditions are best for opening the windows. Implement a system so that occupants are informed of when to open and close the windows to achieve designed performance and optimal comfort.


  • Maintain a building operating plan (BOP) that establishes operating schedules and set points and regularly review these parameters against actual building needs. When developing these parameters, consider both time-of-day and time-of-year variations in optimal temperature requirements and be careful to avoid over-conditioning the building spaces with more ventilation, heating or cooling than is necessary.


  • Adjust reset and setback temperature settings and calibrate controls and sensors. A Building Automation System (BAS) will allow building managers to adjust, monitor and control temperature set points and air volumes throughout the building from a central location. Direct digital controls (DDC) utilized by the BAS will function more efficiently than older pneumatic controls and help to avoid unnecessary use of HVAC equipment during non-business hours and holidays.


  • Develop and implement a comprehensive Indoor Air Quality Management Plan using the EPA’s “Indoor Air Quality Building Education and Assessment Model” (I-BEAM).

    • Assign an IAQ manager. This individual should be responsible for developing and managing the IAQ plan including managing contracts for IAQ related services and communication with building occupants about IAQ related issues.
    • Conduct an IAQ audit of the building and grounds to determine IAQ status. Use forms provided by I-BEAM to record the basic conditions of the building’s occupied spaces, mechanical systems, and building exterior.

  • Following the initial audit, the IAQ manager must make periodic inspections to uncover new IAQ issues and monitor the status of previous issues. The I-BEAM tool supplies inspection forms that can be tailored to the project building to facilitate this process.


  • Establish protocols to manage all significant pollutant sources referenced in I-BEAM that are applicable to the project building.


  • Ensure that procedures are in place for receiving and responding to IAQ complaints from building occupants. The I-BEAM tool provides sample forms and logs for fielding and recording occupant complaints as well as information about key principles for developing effective communication with building occupants regarding IAQ issues. Strategies for investigating and resolving the issues that trigger occupant complaints are covered by a variety of I-BEAM guidelines.

  • USGBC

    Excerpted from LEED 2009 for New Construction and Major Renovations

    IEQ Prerequisite 1: Minimum IAQ Performance

    Required

    Intent

    To establish minimum indoor air quality (IAQIndoor air quality: The quality and attributes of indoor air affecting the health and comfort building occupants. IAQ encompasses available fresh air, contaminant levels, acoustics and noise levels, lighting quality, and other factors.) performance to enhance indoor air quality in buildings, thus contributing to the comfort and well-being of the occupants.

    Requirements

    CASE 1. Mechanically Ventilated Spaces


    Mechanical ventilation systems must be designed using the ventilation rate procedure as defined by ASHRAE 62.1-2007, or the applicable local code, whichever is more stringent.

    OPTION 1. ASHRAE Standard 62.1-2007 or Non-U.S. Equivalent

    Meet the minimum requirements of Sections 4 through 7 of ASHRAE Standard 62.1-2007, Ventilation for Acceptable Indoor Air Quality (with errata but without addenda). Projects outside the U.S. may use a local equivalent to Sections 4 through 7 of ASHRAE Standard 62.1-2007.

    OR

    OPTION 2. CEN Standards EN 15251: 2007 and EN 13779: 2007

    Projects outside the U.S. may earn this prerequisite by meeting the minimum requirements of Annex B of Comité Européen de Normalisation (CEN) Standard EN 15251: 2007, Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics; and the requirements of CEN Standard EN 13779: 2007, Ventilation for nonresidential buildings, Performance requirements for ventilation and room conditioning systems, excluding Section 7.3 – Thermal environment, 7.6 – Acoustic Environment, A.16, and A.17.


    CASE 2. Naturally Ventilated Spaces


    Naturally ventilated buildings must comply with ASHRAE Standard 62.1-2007, Paragraph 5.1 (with errata but without addenda). Project teams wishing to use ASHRAE approved addenda for the purposes of this prerequisite may do so at their discretion. Addenda must be applied consistently across all LEED credits.

    Potential Technologies & Strategies

    Design ventilation systems to meet or exceed the minimum outdoor air ventilation rates as described in the ASHRAE standard. Balance the impacts of ventilation rates on energy use and indoor air quality to optimize for energy efficiency and occupant comfort. Use the ASHRAE Standard 62.1-2007 Users Manual (with errata but without addenda1) for detailed guidance on meeting the referenced requirements.

    FOOTNOTES

    1 Project teams wishing to use ASHRAE approved addenda for the purposes of this prerequisite may do so at their discretion. Addenda must be applied consistently across all LEED credits.

Technical Guides

IEQ Space Matrix - 2nd Edition

This updated version of the spreadsheet categories dozens of specific space types according to how they should be applied under various IEQ credits. This document is essential if you have questions about how various unique space types should be treated. Up to date, 2nd Edition.


ASHRAE 62.1-2007: Outdoor Airflow Monitoring Devices.

ASHRAE 62.1-2007 should be referenced when designing outdoor airflow monitoring devices.


IEQ Space Matrix - 1st Ed.

This spreadsheet categories dozens of specific space types according to how they should be applied under various IEQ credits. This document is essential if you have questions about how various unique space types should be treated.  This is the 1st edition.

Publications

Greening the Building and the Bottom Line

This Rocky Mountain Institute publication is a case study of the connection between worker productivity and indoor air quality.


Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems, 7th ed. (National Environmental Balancing Bureau, 2005)

This manual provides information on the technology and techniques for the design, operation, servicing, and balancing of environmental systems.

Organizations

American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)

ASHRAE publishes widely used standards and publishes the ASHRAE Journal.


Labs for the 21st Century (Labs 21)

Labs21 is a voluntary partnership program dedicated to improving the environmental performance of U.S. laboratories.


Indoor Air Quality Association

IAQA is a nonprofit organization dedicated to promoting the exchange of indoor environmental information through education and research.


Mechanical Service Contractors of America

MSCA is a national trade association that provides educational resources and training programs on sustainable service and maintenance practices for HVACR contractors.


CIBSE Applications Manual 10-2005

Located in London, this organization publishes a series of guides on ventilation, including natural ventilation.

Web Tools

Energy Cost and IAQ Performance

This website contains reports from an extensive EPA modeling study that assessed the compatibilities and trade-offs between energy, indoor air quality, and thermal comfort objectives for HVAC systems and formulated strategies to achieve superior performance.

Software Tools

62MZ Calculator: Ventilation Rate Procedure

This is a Microsoft Excel calculator that accompanies the ASHRAE 62.1 reference standard. The calculator allows users to plug in variables for specific project types and run the Ventilation Rate Procedure.


CONTAM 3.0 Multizone Modeling Software

Public domain software from NIST (National Institute of Standards and Technology) that has natural ventilation sizing tools, and flow models to analytically predict room-by-room airflows.


Loop DA Multizone Modeling Software

Public domain software from NIST (National Institute of Standards and
Technology) that has natural ventilation sizing tools, and flow models
to analytically predict room-by-room airflows.


ASHRAE 62.1 iPhone App

ASHRAE released an app for iPhone, iPod touch, and iPad that allows you to perform comprehensive minimum ventilation calculations for a wide variety of commercial buildings based upon Standard 62.1, using either I-P or SI units. This app is based upon the 62MZCalc.xls. Now, you can make calculations at a meeting and know if your project meets IEQp1 or IEQc2.

Ventilation Rate Table

This example ventilation rate table from 23 High Line provides guidance when developing prerequisite compliance documents for your project.

Air Riser Diagram

This example air riser diagram from 23 High Line shows the mechanical ventilation supply for the building. It is the ducted diagram showing how air will be supplied to building occupants. Use this as an example for how to document ventilation effectiveness compliance.

Mechanical Systems Schedule

Use this example mechanical schedule created from 23 High Line for guidance when developing ventilation effectiveness compliance documents for your project.

LEED Online Forms: NC-2009 IEQ

The following links take you to the public, informational versions of the dynamic LEED Online forms for each NC-2009 IEQ credit. You'll need to fill out the live versions of these forms on LEED Online for each credit you hope to earn.

Version 4 forms (newest):

Version 3 forms:

These links are posted by LEEDuser with USGBC's permission. USGBC has certain usage restrictions for these forms; for more information, visit LEED Online and click "Sample Forms Download."

Design Submittal

PencilDocumentation for this credit can be part of a Design Phase submittal.

932 Comments

0
0
Todd Tewksbury Mechanical Engineer Bala Consulting Engineers, Inc
Jul 27 2015
Guest
6 Thumbs Up

Low System Ventilation Efffiency for Corridors

Hi,

I am conducting a ventilation calculation for the an office building that consists of open office space, conference rooms, corridors, etc. The office space is served by 4-pipe fan coil (terminal) units. 100% outdoor air provided from a central outdoor air unit is ducted to the return duct of each fan coil unit.

One of my zones (i.e. group of spaces serve by a since fan coil unit) consists of a 700 SF conference room and an adjacent 100 SF corridor.

The conference room has 10 chairs, so at 0.06 CFM/SF and 5 CFM/person, we get about 92 CFM OA. The air distribution effectiveness is 0.8, so the OA requirement is 115 OA CFM.

The 100 SF corridor in this zone has very little internal load - it is an internal space and only a lighting load. The 0.06 CFM/SF required by code, along with its distribution effectiveness of 0.8, requires 7.5 CFM of OA be delivered to this space.

However, since the 7.5 CFM of OA is nearly half of the primary airflow required to cool the space (as calculated by Carrier Hourly Analysis), we're getting a System Ventilation Efficiency as low as 0.20, which is driving up the OA required to the fan coil unit to a point that it is greater than the supply air requirement to cool the zone. For a zone that requires only 400 CFM of 55F supply air for cooling, the OA calculation is requiring (115 CFM + 7.5 CFM)/0.20 = 612.5 CFM of OA. The ASHRAE 62.1 Calc is increasing the supply air to this zone such that it is 100% OA and it is overcooling the space, which requires reheat. This is detrimental to the buildings energy performance because the increase OA conditioning load and zone reheat are unnecessary.

I understand that I can manually change airflow in HAP and alter the model in other ways to get a more logical answer, but I am really looking for a LEED interpretationLEED Interpretations are official answers to technical inquiries about implementing LEED on a project. They help people understand how their projects can meet LEED requirements and provide clarity on existing options. LEED Interpretations are to be used by any project certifying under an applicable rating system. All project teams are required to adhere to all LEED Interpretations posted before their registration date. This also applies to other addenda. Adherence to rulings posted after a project registers is optional, but strongly encouraged. LEED Interpretations are published in a searchable database at usgbc.org. towards whether or not this small corridor (an other small spaces that require OA by ASHRAE 62.1) really need to be included in the OA calculation in such a situation. My firm would like to use our energy modeling software to calculate loads and OA requirements for buildings, but this specific instance is preventing us from doing so.

Please let me know if you have any knowledge as to whether these small spaces requiring OA can be excluded/altered from the IEQp1 Calculation in any way. Any help in a resolution is much appreciated. Thanks!

1
1
0
Ilona Johnson, PE, CEM, LEED AP Associate, Lilker EMO Energy Solutions Jul 27 2015 Guest 431 Thumbs Up

Todd,
LEED reviewers will definitely expect you to ventilate the corridor properly. Some options for you include:
- increase the supply air to the corridor
-if the corridor is in the building interior and does not need heat, then you could design it without reheat. This would allow you to use an air distribution effectiveness of 1.0. That should help a little bit.
-you could install a transfer fan from another room to the corridor. Just note that your calculation would have to be based on "unused outdoor air".
I hope that helps!
ilona

Post a Reply
0
0
Jutta Berns-Mumbi principal ecocentric cc
Jul 20 2015
LEEDuser Member
1760 Thumbs Up

Cold rooms

Project Location: South Africa

Good morning,

We have a project that has two cold rooms at -17 and 0 degrees Fahrenheit. These rooms are temporary storage locations of perishable product.
They will be regularly occupied but only for short shifts (around half an hour).

These cold rooms (as with most cold rooms) do not have a fresh air supply to them. It would not be practical to supply fresh air to them, as this would result in huge energy uses and a much more expensive system. The rooms are very large, will frequently have doors opened and closed, and are only occupied by a few occupants
I can find no reference anywhere in ASHRAE 62.1 regarding cold rooms.

Is there anyway in which I can exclude these rooms from the requirements of ASHRAE 62.1 for IEQp1?
I can find no other interpretation result speaking to this.

Also the cold rooms are acceptable according to the local code.

Thank you

Post a Reply
0
0
Daniel Rimbault
Jul 17 2015
Guest
4 Thumbs Up

Recirculating airflow, table 6.4 and cold rooms

Good morning everyone. I have three quick questions I am hoping someone can help me with;

Many of my zones have fresh air supplied by a central AHU1.Air-handling units (AHUs) are mechanical indirect heating, ventilating, or air-conditioning systems in which the air is treated or handled by equipment located outside the rooms served, usually at a central location, and conveyed to and from the rooms by a fan and a system of distributing ducts. (NEEB, 1997 edition) 2.A type of heating and/or cooling distribution equipment that channels warm or cool air to different parts of a building. This process of channeling the conditioned air often involves drawing air over heating or cooling coils and forcing it from a central location through ducts or air-handling units. Air-handling units are hidden in the walls or ceilings, where they use steam or hot water to heat, or chilled water to cool the air inside the ductwork. and also have an FCU within them recirculating the air. So the Design total supply for each zone (Vdzd) is large and therefore the Design primary supply (Vpsd) for the multizone system is much higher than that capable from the AHU alone. I'm concerned that the reviewer will check this high value of Vpsd against the unit on the equipment schedule and think something is amiss. However the Outdoor air intake (OA) is lower than the flow rate listed on the equipment schedule in all cases. Should I clarify the high Vpsd in someway, or will it be clear to the reviewer that it is because of the FCUs? Perhaps I am worrying about nothing?

Am I correct in saying any zone that is listed in Table 6.4 does not need to meet minimum supply rates defined in previous sections, and conversely that any zone not in table 6.4 does not need to meet minimum exhaust rates of table 6.4. In my user generated spreadsheet each zone is in one or the other section, but not both. Is this correct?

I have a cold room in the facility that does not have a fresh air supply to it because this would require a huge amount of energy and a much bigger refrigeration system. The workers in this area will only be in there for short shifts and the space is very large. Is it excluded from the minimum supply requirements?

Thanks very much

Post a Reply
0
0
Laura Charlier LEED Services Director Group14 Engineering
Jul 10 2015
LEEDuser Member
453 Thumbs Up

Kitchen MUA Unit

I'm wondering if the kitchen MUA unit needs to included in the ventilation calculations? We would like to exclude it from our calcs because it’s primary purpose is for space pressure control, not ventilation. The KMAU will only run when the exhaust hood is on and all of the outside air will be exhausted quickly. The required ventilation air for the kitchen is supplied by an adjacent RTU.

1
1
0
Andrew Mitchell, P.E. Mechanical Engineer / LEED Coordination Manager, Moses & Associates Jul 10 2015 LEEDuser Expert 3242 Thumbs Up

Commercial kitchens are included in Table 6-4. You do not need to include them in the 62MZ calc, but you should address them in a narrative to state that they meet the requirements of the standard.

Post a Reply
0
0
Annalise Reichert LEED Project Coordinator Environmental Building Strategies
Jul 06 2015
LEEDuser Member
131 Thumbs Up

Partially Occupied Warehouse

I am working on a project that has a 45,000 SF unconditioned warehouse and utilizes natural ventilation. A small portion of the warehouse is used for educational purposes, the majority is used for storage. Currently, the only operable windows are along the perimeter walls, however the majority of the space is not within 25 feet of these operable windows. The ceiling is 40 feet high.

How would we comply with natural ventilation requirements in the central spaces? If operable skylights are added, the floor space would still be outside the 25 foot range. Is there an exemption for the portion of the warehouse that is used only for storage?

1
3
0
Gustavo De las Heras Izquierdo Arch. Eng. LEED AP BD+C; O+M, Revitaliza Consultores Jul 06 2015 Guest 533 Thumbs Up

Hi Annalise!

I am afraid that if you are not able to provide natural ventilation meeting ASHRAE or CIBSE requirements you will need to implement mechanical ventilation. I would say you have to options:

1.I would try first with ASHRAE 62.1-2010, which gives you the requirements to design a space with cross ventilation (unlike ASHRAE 62.1-2007)

2.If you are not able to provide natural ventilation following (1) I would try with mixed-mode ventilation. As far as I know ASHRAE hasn't defined the requirements for this system yet, but it has been widely accepted and very efficient. According to ASHRAE 62.1 you need to provide 0 L/s•person PLUS 0.3 L/s•m2.

2
3
0
Annalise Reichert LEED Project Coordinator, Environmental Building Strategies Jul 06 2015 LEEDuser Member 131 Thumbs Up

Hi Gustavo,

Thank you for the response. I just came across a LEED Intepretation, #10144 that states "if the distance from windows or openings is more than 25 feet, is there an exhaust air fan located at the furthest distance from the windows that is inducing the outdoor air to flow through the space; is that exhaust fan flow equivalent to the outside airflow that would be required for the space if the Ventilation Rate Procedure were used?" If utilizing exhaust fans in spaces that are greater than 25 feet from operable windows, is there a requirement for the distribution of exhaust fans throughout the space that doesn't comply?

3
3
0
Gustavo De las Heras Izquierdo Arch. Eng. LEED AP BD+C; O+M, Revitaliza Consultores Jul 08 2015 Guest 533 Thumbs Up

It depends on your floor plan. You will need to ensure that there are left no zones without ventilation (either rooms or corners in your warehouse).

Post a Reply
0
0
Mauricio Ramirez
Jul 01 2015
Guest
717 Thumbs Up

Exterior space, partially enclosed - Application of Std.

Project Location: Mexico

Hello in a Museum, we have an uderground open space, that, on our understanding is an exterior space, as it is outside the Access vestibule. It has a roof overhang but have a completely and permanently open side, with more than 40ft and the total height of the space, in which there are the acces stairs and a water feature. However there will be two people in this space working in an info booth. In our undesrtangind, this is an exterior space with the shadow of the overhang, and therefore have no thermal conditioning or mechanical ventilation. Is this space is required to be included in the Ventilacion calculations of the ASHRAE Standard 62.1 (Natural or mechanical) and in the Thermal comfort requirements (ASHRAE Std. 55). We thing it's excluded as an outdoor space, but want to confirm.

1
1
0
Gustavo De las Heras Izquierdo Arch. Eng. LEED AP BD+C; O+M, Revitaliza Consultores Jul 06 2015 Guest 533 Thumbs Up

Hola Mauricio,

According to your explanation, I would say that the info-booth can be considered as naturally ventilated (assuming they have a large open window) and it meets ASHRAE 62.1-2007 standard.

Regarding ASHRAE 55 requirements, unless the info-booth has some kind of heating or air conditioning I think it is difficult to justify thermal comfort in this space (and achieve IEQc7.1). However, you might have a chance if the energy model says this space is within the confort range most of the year.

Post a Reply
0
0
Hieu Huynh Environmental Engineer, LEED AP BD+C
Jun 16 2015
Guest
56 Thumbs Up

OA calculation

Project Location: Vietnam

Hi, I just received the feedback from reviewer. We have AHU1.Air-handling units (AHUs) are mechanical indirect heating, ventilating, or air-conditioning systems in which the air is treated or handled by equipment located outside the rooms served, usually at a central location, and conveyed to and from the rooms by a fan and a system of distributing ducts. (NEEB, 1997 edition) 2.A type of heating and/or cooling distribution equipment that channels warm or cool air to different parts of a building. This process of channeling the conditioned air often involves drawing air over heating or cooling coils and forcing it from a central location through ducts or air-handling units. Air-handling units are hidden in the walls or ceilings, where they use steam or hot water to heat, or chilled water to cool the air inside the ductwork. to supply 100% OA to the space and FCUs for secondary recirculation. Reviewer said:

"The design system primary supply air flow volume (Vps) don't match the supply air flow of AHU in equipment schedule. + Calculation must be performed at the worst-case condition when VAVVariable Air Volume (VAV) is an HVAC conservation feature that supplies varying quantities of conditioned (heated or cooled) air to different parts of a building according to the heating and cooling needs of those specific areas. system is at minimum flow."

I'm try to figure out where is the error in my calc. I'm checking Vdzd, Ds, Vpz, Vps. For example, Vdzd = 1,400 (OA /SA by AHU) + 10,000 (recirculated by FCU) = 11,400 cfm. How can I adjust (Ds). I had set Ds = 100% beforehand. I think that had made supply airflow by AHU was much larger than that in equipment schedule. And I just check that Vdzd * Ds = Vpz (supply airflow by AHU) = 1,400 cfm. So is it correct that I adjust Ds = 1,400/11,400 = 12%

1
3
0
Gustavo De las Heras Izquierdo Arch. Eng. LEED AP BD+C; O+M, Revitaliza Consultores Jun 16 2015 Guest 533 Thumbs Up

I think the error is in "Vdzd". You should enter here the total air supplied by all the FCU located in the space. This number must match that showed in the mechanical schedule. You shouldn't add OA, since it is already mixed in the FCU.
"Ds" is ok in 100%. You can lower this percentage in case you now that all spaces cannot be fully occupied at the same time, for instance: workers can be either at the cafeteria or at their workstation, but they cannot be at both places at the same time (as long as string theory is not proven right).

2
3
0
Hieu Huynh Environmental Engineer, LEED AP BD+C Jul 16 2015 Guest 56 Thumbs Up

Hi Gustavo,

Thank you very much for your advice, I checked the VRP on Leedonline form, so Vps of AHU1.Air-handling units (AHUs) are mechanical indirect heating, ventilating, or air-conditioning systems in which the air is treated or handled by equipment located outside the rooms served, usually at a central location, and conveyed to and from the rooms by a fan and a system of distributing ducts. (NEEB, 1997 edition) 2.A type of heating and/or cooling distribution equipment that channels warm or cool air to different parts of a building. This process of channeling the conditioned air often involves drawing air over heating or cooling coils and forcing it from a central location through ducts or air-handling units. Air-handling units are hidden in the walls or ceilings, where they use steam or hot water to heat, or chilled water to cool the air inside the ductwork. in LEEDonline form = summary of "Vdzd" which is total air supplied by all FCU according to you. So Vps in the form is not SA of AHU in equipment schedule, but it is the total supplied air of All FCUs related to this AHU. Do you think the reviewer made a mistake when asking me to match Vps in calculation and SA of AHUs in equipment schedule?

3
3
0
Gustavo De las Heras Izquierdo Arch. Eng. LEED AP BD+C; O+M, Revitaliza Consultores Jul 17 2015 Guest 533 Thumbs Up

Hi Hieu, In my first message you asked about "Ds" and I wrongly told you the definition for other concept: "D" Diversity. Sorry about that". "Ds" is defined in the calculator's first tab.

In some cases SA can match and Vps but I think that your best option is to contact the review team and ask them for some advise. They will be happy to assist you.

Post a Reply
0
0
Alfonzo Collins
Jun 10 2015
Guest
71 Thumbs Up

walk-in closets in residential

Project Location: United States

I would like to know if there's any way I can consider walk-in closets in a residential building as unoccupied spaces. The IEQ Space Matrix lists them as occupied, but this seems silly, since nobody spends any significant time there. According to the definition of regularly occupied spacesRegularly occupied spaces are areas where one or more individuals normally spend time (more than one hour per person per day on average) seated or standing as they work, study, or perform other focused activities inside a building. (1 hr per person per day), walk-in closets are definitely unoccupied.

Furthermore, CIRCredit Interpretation Ruling. Used by design team members experiencing difficulties in the application of a LEED prerequisite or credit to a project. Typically, difficulties arise when specific issues are not directly addressed by LEED information/guide #1888 states, "Note that walk-in closets are excluded from the Standard, since they cannot be considered as "occupiable space" by the Standard's definition (page 4 of ASHRAE Standard 62.1-2004)." So it seems like the CIR and ASHRAE 62 both disagree with the IEQ space matrix. Also, NYC Mechanical Code, where this project is located, classifies walk-in closets as unoccupied.

So if I take this all together, it seems like there may just be a typo in the IEQ Space Matrix, since the CIR, ASHRAE (and NYC Code) all disagree. Has anyone had any experience with walk-in closets? Can I get away with not ventilating them? Thanks in advance.

1
2
0
Kathryn West LEED AP BD+C, O+M, Green Globes Professional, Guiding Principles Compliance Professional, Energy Ace Jun 11 2015 Guest 4977 Thumbs Up

Wow, I am glad you brought this up because I wouldn't have even thought of a walk in closet as being occupiable.

You point out a serious discrepancy between ID #1888 and the IEQ Space type matrix. I'd email leedinfo@usgbc.org about this otherwise you might have trouble during your LEED review.

I think they are just changing their tune on this since the LEED InterpretationLEED Interpretations are official answers to technical inquiries about implementing LEED on a project. They help people understand how their projects can meet LEED requirements and provide clarity on existing options. LEED Interpretations are to be used by any project certifying under an applicable rating system. All project teams are required to adhere to all LEED Interpretations posted before their registration date. This also applies to other addenda. Adherence to rulings posted after a project registers is optional, but strongly encouraged. LEED Interpretations are published in a searchable database at usgbc.org.. Even though it is not regularly occupied the "equipment retrieval" (getting clothes) is not "occasional" since presumably people get dressed every day.

Therefore according to note #14 they would want you to ventilate it.

I think "regularly occupied" only applies to IEQc8, IEQp1 relates to "occupied" vs "non-occupied" spaces.

2
2
0
Alfonzo Collins Jun 12 2015 Guest 71 Thumbs Up

Thanks Kathryn...I emailed that address; I'll let you know what happens!

Post a Reply
0
0
Gordon Nielson Nielson Engineering
May 29 2015
Guest
9 Thumbs Up

62MZCalc

Project Location: United States

I noticed, I cannot enter rooms that require exhaust like restrooms and lockers. Do I exclude them on the excel spread sheet?

1
1
0
Gustavo De las Heras Izquierdo Arch. Eng. LEED AP BD+C; O+M, Revitaliza Consultores Jul 06 2015 Guest 533 Thumbs Up

You have to make a different calculator per each exhaust fan.

Post a Reply
0
0
Gordon Nielson Nielson Engineering
May 29 2015
Guest
9 Thumbs Up

62MZCalc Excel Program

which is the correct abbreviation for a single duct constant volume system with fresh air introduced at the fan?

1
1
0
Gustavo De las Heras Izquierdo Arch. Eng. LEED AP BD+C; O+M, Revitaliza Consultores Jul 06 2015 Guest 533 Thumbs Up

Do you mean for the Ez (zone air distribution effectiveness)?

Post a Reply
0
0
Gordon Nielson Nielson Engineering
May 29 2015
Guest
9 Thumbs Up

IEQp1 ventilation cals

I am calculating the ventilation requirements for a conference room. From the ASHRAE Table 6-1 I selected .06 cfm/ft2 and 5 cfm/person. The room has occupancy of 8 people. Since the room is not regularly occupied, do I uses 0 people for the actual occupancy when I do the Leeds compliance?
Would this be the same for a file storage room, copy room and library?

1
1
0
Ilona Johnson, PE, CEM, LEED AP Associate, Lilker EMO Energy Solutions May 29 2015 Guest 431 Thumbs Up

You should use the peak occupancy, which is 8 people.

There are some allowances for time averaging in spaces with variable occupancy, but you wouldn't apply that here. Just use the peak occupancy. The LEED reviewers want to know that the system can provide sufficient ventilation for worst-case conditions at peak occupancy.

Post a Reply
0
0
Gordon Nielson Nielson Engineering
May 27 2015
Guest
9 Thumbs Up

IEQp1

Project Location: United States

I am having troubles understanding what is a single zone system and a multiple-zone system and how to fill out the forms. Example: I have a zone with eight individual offices and corridor on a air handler and another zone with restrooms, library, records and corridor fed from a different air handlers.

1
1
0
Gustavo De las Heras Izquierdo Arch. Eng. LEED AP BD+C; O+M, Revitaliza Consultores May 27 2015 Guest 533 Thumbs Up

1.A single zone is when a fan is providing outdoor air for a unique zone, for instance a dinning room. In this case you should complete the ventilation calculator in the LEED form.
2.A multiple zone is when a fan is providing outdoor air for different spaces at the same time (restrooms+library+records+corridor...). In this case you should use the excel calculator (.xls file) downloadable from this web and upload it to LEED online.

Post a Reply
0
0
Stella Stella
May 24 2015
Guest
317 Thumbs Up

n/a

Hi All,
we are trying to file compliance for both IEQ P1 & C 1,it would be great if someone could help me clarify on the below:
1)if a meeting room is served by a dedicated FCU;
Does the meeting room require both the airflow measurement device as well the CO2Carbon dioxide sensors or just the CO2 sensor will do?
2) We have CO2 sensors in the return air duct that modulate the airflow based on occupancy. When there is less/no occupancy if modulates the damper to close In order to save energy.
Now when we program the airflow device serving the same space to maintain a minimum airflow, it does not complement each other. As airflow devices are programmed to maintain a minimum airflow even with no occupancy. How to resolve this?

1
4
0
Gustavo De las Heras Izquierdo Arch. Eng. LEED AP BD+C; O+M, Revitaliza Consultores May 27 2015 Guest 533 Thumbs Up

I can hep you with (1): If your meeting room is mechanically ventilated, then you need to install an airflow measurement device in the duct providing outdoor air. If your meeting room is naturally ventilated, then the CO2Carbon dioxide sensors will do.
For (2) I would say that you can use your demand controlled ventilation instead of the airflow measurement device required by the credit. Since this is out of the credit requirements, I would submit an inquiry through the USGBC web-site for your particular case.

2
4
0
Stella Stella May 28 2015 Guest 317 Thumbs Up

Hi Gustavo,
Thanks for the comments. We have a project where some area are served by AHU1.Air-handling units (AHUs) are mechanical indirect heating, ventilating, or air-conditioning systems in which the air is treated or handled by equipment located outside the rooms served, usually at a central location, and conveyed to and from the rooms by a fan and a system of distributing ducts. (NEEB, 1997 edition) 2.A type of heating and/or cooling distribution equipment that channels warm or cool air to different parts of a building. This process of channeling the conditioned air often involves drawing air over heating or cooling coils and forcing it from a central location through ducts or air-handling units. Air-handling units are hidden in the walls or ceilings, where they use steam or hot water to heat, or chilled water to cool the air inside the ductwork.'s and some areas served by constant flow FCU's with individual outdoor air supply fans. Now we are providing airflow measurement device for all AHU's. Since the number of FCU's are quite many & are constant volume, can we just provide CO2Carbon dioxide sensors within the rooms for all spaces served by FCU? instead of airflow measurement device (including non-densely occupied zones)so that we are in compliance with both IEQp1 & IEQc1.

3
4
0
Gustavo De las Heras Izquierdo Arch. Eng. LEED AP BD+C; O+M, Revitaliza Consultores May 28 2015 Guest 533 Thumbs Up

Hi Stella, I guess your concern is about the cost associated with installing many measuring devices. We usually drop this credit when there are many outdoor air fans. However, if you read carefully the credit you only need to install this device "for mechanical ventilation systems where 20% or more of the design supply airflow serves nondensely occupied spacesOccupied Spaces are defined as enclosed spaces that can accommodate human activities. Occupied spaces are further classified as regularly occupied or non-regularly occupied spaces based on the duration of the occupancy, individual or multi-occupant based on the quantity of occupants, and densely or non-densely occupied spaces based upon the concentration of occupants in the space.".

4
4
0
Stella Stella May 28 2015 Guest 317 Thumbs Up

Hi,
The concern is not the cost rather the use of the Airflow stations; the FCU’s are constant flow and doesn’t have any damper to modulate the airflow, even if there is an alarm by the AFS. Hence I don’t see the point of installing one. To answer your question, the FCU’s servers non densely occupied zones as well. So I would rather put in a CO2Carbon dioxide sensor within the room to generate the alarm. Please advice.

Post a Reply
0
0
CT G
May 21 2015
LEEDuser Member
344 Thumbs Up

Natural ventilation - 5.1.1

Dear all,

We are working on a project with 418,000 sf with mechanical ventilation of OA in most of the spaces and a non-24 hours chiller.

There is a small space with 110 sf and one person, with 24-hour occupancy and a independent HVAC system.

We are pursuing credit IEQc2 and IEQc5, then it's not practical to use a fan with 30 ft long duct and MERVMinimum efficiency reporting value. 13 for 20 cfm OA flow rate.

For this reason we want to use natural ventilation for this space.

The space doesn't have a direct opening to the outdoors but there is a shaft with an opening to the outdoors on the top that runs alongside the space.

Can we design an opening connecting the space with the shaft with an opening of 4% of the net occupiable floor area and comply with the section 5.1.1 from ASHRAE 62.1-2007?
We would be assuming the shaft as outdoors with this approach, since it has a free opening to the outdoors on top.

1
3
0
CT G May 27 2015 LEEDuser Member 344 Thumbs Up

Any help?

2
3
0
David Hubka Director - Operations, Transwestern Sustainability Services May 27 2015 LEEDuser Expert 1790 Thumbs Up

If the opening in question is permanantly open (or easily able to be opened by occupants while the room is occupied), at least 4% of the floor area and within 8 meters of the floor area being served by the opening... it will comply.

The standard allows either the wall or roof to be used as the opening.

Hope this helps.

3
3
0
CT G May 28 2015 LEEDuser Member 344 Thumbs Up

Thank you, David.

I appreciate your response.

Post a Reply
0
0
Omar ElRawy Building Engineer, LEED AP BD+C EA Building Consultants
May 19 2015
Guest
790 Thumbs Up

Pantry in Office Building

Dear all,
I have a Pantry zone in an office building that is conditioned spearetely by a FCU. This zone has refrigerator, coffee maker, and recycling bins. The zone is supposed to be used an occupant or by an office boy only to prepare drinks. Knowing that I didn't include this zone on the forms during preliminary design submittal and didn't get feedback regarding it; should I include this zone on the LEEDOnline form during final design submittal or not? if so, and I'am ventilating this zone by a window, should I mark that "The project building is naturally ventilated, in part or in whole" only because of this zone?. I'am using V.03 forms.

Thanks

Post a Reply
0
0
CT G
May 05 2015
LEEDuser Member
344 Thumbs Up

Centrifugal closed-circuit cooling tower minimun distances

Dear all,

Do centrifugal closed-circuit cooling towers have to comply with table 5-1, of ASHRAE 62.1-2007?

In our project, the closest distance from the cooling tower to the DOAS is 6 meters (horizontally) and the discharge is on the top of the tower (3 meters tall).

Are we complying with 62.1-2007?

Thanks in advance.

AL

1
1
0
Andrew Mitchell, P.E. Mechanical Engineer / LEED Coordination Manager, Moses & Associates May 06 2015 LEEDuser Expert 3242 Thumbs Up

You need to be 25 ft from the exhaust and 15 feet from the intake. These are areas of moisture laden air with chemical contaminants. The distance is actual distance in space, not horizontal projection.

Post a Reply
0
0
Leanne Niu
Apr 27 2015
LEEDuser Member
19 Thumbs Up

If the ventilation of kitchens in hotel should be included in

Project Location: China

A hotel project that the kitchens have independent ventilation and outdoor air system , whether the ventilation of kitchens should be included in the calculation?

1
2
0
Andrew Mitchell, P.E. Mechanical Engineer / LEED Coordination Manager, Moses & Associates Apr 27 2015 LEEDuser Expert 3242 Thumbs Up

Yes, you should include these in the credit documentation.

2
2
0
Leanne Niu Apr 27 2015 LEEDuser Member 19 Thumbs Up

OK,thanks.

Post a Reply
0
0
Marni Punt Associate Aurecon
Apr 14 2015
LEEDuser Member
24 Thumbs Up

Basement lobbies

Project Location: South Africa

We have a project with 3 lobbies located in basement parking. The lobbies are not regularly occupied spacesRegularly occupied spaces are areas where one or more individuals normally spend time (more than one hour per person per day on average) seated or standing as they work, study, or perform other focused activities inside a building., but are circulation spaces connecting to the main reception and lobby on the Ground floor via lifts and a staircase. The main reception and lobby are being supplied with outdoor air. Do we need to supply outdoor air to the basement lobbies?

1
2
0
Andrew Mitchell, P.E. Mechanical Engineer / LEED Coordination Manager, Moses & Associates Apr 15 2015 LEEDuser Expert 3242 Thumbs Up

Your description does not really illustrate how the basement lobby is connected to the ground floor or to the parking garage itself. Based on the description above though, you should comply with ASHRAE 62.1-207 requirements for lobby ventilation.

2
2
0
Marni Punt Associate, Aurecon Apr 20 2015 LEEDuser Member 24 Thumbs Up

Hi Andrew, thank you for your reply. The lobbies in question are linked with a communication staircase that leads all the way up to the roof so there will be adequate ventilation of these lobbies through the upper ventilated levels,also these basement lobbies have self-closing doors installed on each basement level .The basements are being CO2Carbon dioxide monitored to ensure that there is no build-up of toxic gasses and is ventilated accordingly. The basements where the small lift lobbies are located are purely for parking and as I understand ASHREA only addresses occupied spacesOccupied Spaces are defined as enclosed spaces that can accommodate human activities. Occupied spaces are further classified as regularly occupied or non-regularly occupied spaces based on the duration of the occupancy, individual or multi-occupant based on the quantity of occupants, and densely or non-densely occupied spaces based upon the concentration of occupants in the space.. So in essence we are debating the definition of Lobbies?

Post a Reply
0
0
sriram tetali Manager -Suatainability Services M W Group
Mar 26 2015
Guest
27 Thumbs Up

Minimum Ventilation rates for Production area

Project Location: India

Hi all
Can u suggest the Ventilation rates for the Production / manufacturing areas for a Pharmaceutical clients because ASHRAE doesn't mention any for the Production in the Table 6-1

1
3
0
Andrew Mitchell, P.E. Mechanical Engineer / LEED Coordination Manager, Moses & Associates Mar 26 2015 LEEDuser Expert 3242 Thumbs Up

Sriram, ASHRAE would not define ventilation rates for your application. You need to refer to the U.S. Pharmacopoeial Convention applicable standards.

2
3
0
sriram tetali Manager -Suatainability Services, M W Group Mar 27 2015 Guest 27 Thumbs Up

Thanks for the reply,
We are using the in house standards of the Pharmaceutical client Which are More stringent than ASHRAE, But From LEED point of view and to compare with ASHRAE base case can we assume the Ventilation Rates of Wood / Metal Shop given in Table 6.1 of ASHRAE- 62.1?

3
3
0
sriram tetali Manager -Suatainability Services, M W Group Mar 27 2015 Guest 27 Thumbs Up

Andrew, can you please share the link for the US Pharmacopoeial Convention Standards?
Also can anyone give the reference from the LEED Reference guide / Addenda, that justifies the use of above standard as a baseline for IEQc2 credit?
Thank you.

Post a Reply
0
0
Stella Stella
Mar 23 2015
Guest
317 Thumbs Up

Naturally ventilated corridors

In one of our project we have a Main corridor that is completely open with just a parapet wall and roof overhang. Now we have another small corridor that is connected to this Main corridor. The ventilation for this small corridor is through the Main corridor. The farthest point on this small corridor is more than 25ft from the main corridor wall/opening. Can it still be considered as naturally ventilated?

1
11
0
David Hubka Director - Operations, Transwestern Sustainability Services Mar 24 2015 LEEDuser Expert 1790 Thumbs Up

not per ASHRAE 62.1 definition, you may need to include a fan at the farthest point.

2
11
0
Andrew Mitchell, P.E. Mechanical Engineer / LEED Coordination Manager, Moses & Associates Mar 24 2015 LEEDuser Expert 3242 Thumbs Up

If it is not an enclosed space then it does not need to be included. Also, corridors can be considered non-occupiable spaces according to the 62.1 users' guide, therefore they would not need ventilation.

3
11
0
David Hubka Director - Operations, Transwestern Sustainability Services Mar 24 2015 LEEDuser Expert 1790 Thumbs Up

This gets to be a little tricky, the use of the corridor will dictate if ventilation is required.

"corridors that are used primarily for emergency egress do not have to be ventilated. Corridors that are more frequently occupied, such as those used for the delivery of merchandise in a retail mall, must be ventilated." per ASHRAE User Manual Example 6-E.

Also, review the IEQ Space Matrix located at: http://www.usgbc.org/resources/eq-space-type-matrix

This spreadsheet provides guidance when applying this IEQ prereqs/credits to various occupancies.

4
11
0
Stella Stella Mar 25 2015 Guest 317 Thumbs Up

Thank you for the response. The main corridor of this building is along the external facade and hence it is semi open with just a roof and a parapet wall (completely naturally ventilated). There is a small internal corridor that branches from this main corridor. Now this internal corridor has walls on the three sides and the fourth side is open connecting to the main corridor. This internal corridor has roof and is used for access to open office spaces and meeting rooms.

Will it be acceptable to claim this space as non-regularly occupied space?
If not what kind of fans do we need to provide as it is not a completely enclosed space? Can we just use a normal ceiling fan/wall fan to comply? Or do we need to provide MV?

Appreciate your inputs.

5
11
0
David Hubka Director - Operations, Transwestern Sustainability Services Mar 25 2015 LEEDuser Expert 1790 Thumbs Up

Corridors are considered nonregularly occupied spacesOccupied Spaces are defined as enclosed spaces that can accommodate human activities. Occupied spaces are further classified as regularly occupied or non-regularly occupied spaces based on the duration of the occupancy, individual or multi-occupant based on the quantity of occupants, and densely or non-densely occupied spaces based upon the concentration of occupants in the space. however that does not exclude them from the ventilation requirements.

I'd use the 62MZ to calculate the ventilation required for this corridor and size the fan accordingly. The fan can exhaust out the wall or roof.

I am not sure what you mean by "MV".

6
11
0
Stella Stella Mar 25 2015 Guest 317 Thumbs Up

Thanks David. I am not sure if we can include exhaust fans as all the three walls are internal walls and cannot have any opening. There are floors above the corridor and hence cannot have any opening on roof either. Can just using a domestic ceiling fan/wall fan suffice, as it’s not a completely enclosed space?
"MV"-Mechanical Ventilation.

7
11
0
David Hubka Director - Operations, Transwestern Sustainability Services Mar 26 2015 LEEDuser Expert 1790 Thumbs Up

Thank you for the additional info.

A ceiling fan, also known as a destratification fan, would not suffice since it mixes air rather than transfers air. A wall fan should suffice since it transfers air.

8
11
0
Andrew Mitchell, P.E. Mechanical Engineer / LEED Coordination Manager, Moses & Associates Mar 26 2015 LEEDuser Expert 3242 Thumbs Up

How long is your corridor and what are the dimensions of the opening to the outdoors? Natural ventilation requirements are meant for "openable" areas, not permanently open areas. If your corridor communicates directly outside without any obstruction, then you likely do not need mechanical ventilation to satisfy ASHRAE 62.1.

9
11
0
Stella Stella Mar 26 2015 Guest 317 Thumbs Up

Thanks Andrew & david.The corridor is “L” shaped with a total length of 18m and 1.8m wide. There are no operable windows and it is permanently open. The upper part of the corridor opens to the exterior (no wall-permanent opening 4m X 1.8m) and the lower part of the corridor leads to various room. So it has opening at one end and rooms at the lower end. Can it be considered as a unenclosed space and could it be exempted from Natural ventilation calculations?

10
11
0
Stella Stella Mar 30 2015 Guest 317 Thumbs Up

Hi, would Appreciate your comments

11
11
0
David Hubka Director - Operations, Transwestern Sustainability Services Apr 01 2015 LEEDuser Expert 1790 Thumbs Up

ASHRAE 90.1 defines "enclosed space" as a volume substantially surrounded by solid surfaces such as walls, floors, roofs, and openable devices such as doors and operable windows.

From your description I believe the corridor to be substantially surrounded and thus would define it as an enclosed space.

Post a Reply
0
0
Stella Stella
Mar 23 2015
Guest
317 Thumbs Up

IEQP1 Online template

Hi All,
Our project has some of the areas that are mechanically ventilated (AHU1.Air-handling units (AHUs) are mechanical indirect heating, ventilating, or air-conditioning systems in which the air is treated or handled by equipment located outside the rooms served, usually at a central location, and conveyed to and from the rooms by a fan and a system of distributing ducts. (NEEB, 1997 edition) 2.A type of heating and/or cooling distribution equipment that channels warm or cool air to different parts of a building. This process of channeling the conditioned air often involves drawing air over heating or cooling coils and forcing it from a central location through ducts or air-handling units. Air-handling units are hidden in the walls or ceilings, where they use steam or hot water to heat, or chilled water to cool the air inside the ductwork./FCU) and some spaces that are naturally ventilated. We have provided the details for both. Though the “Table IEQp1-A5. Natural Ventilation” shows “Y” for Compliance with IEQ Prerequisite 1; the “Table L-17. Natural Ventilation AHU Summary” shows “N” for Compliance with IEQ Prerequisite 1. Please advice!

1
4
0
Stella Stella Mar 24 2015 Guest 317 Thumbs Up

Does anyone have a clue?

2
4
0
David Hubka Director - Operations, Transwestern Sustainability Services Mar 24 2015 LEEDuser Expert 1790 Thumbs Up

click "calculate" after any or all data is entered. both "calculate" buttons should be clicked for Table IEQp1-A5 and Table IEQp1-A6 for Table L-17 to display correctly.

If the tables are not linking correctly note this within a narrative when submitting.

good luck!

3
4
0
Andrew Mitchell, P.E. Mechanical Engineer / LEED Coordination Manager, Moses & Associates Mar 24 2015 LEEDuser Expert 3242 Thumbs Up

If what David says does not work, then you will need to provide more information. Your post is quite vague as far as pointing out what might be a potential problem.

4
4
0
Stella Stella Mar 24 2015 Guest 317 Thumbs Up

Thank you!

Post a Reply
0
0
Orçun Özhelvacı Quality Engineer - LEED Project Manager VEN ESCO
Mar 22 2015
LEEDuser Member
74 Thumbs Up

Storage Room with a small window

Project Location: Turkey

Hi everyone,

Although I read almost all the comments related with the ventilation requirements of the storage rooms, I could not find the exact answer for my question.

In our project we have a storage room (definitely will be visited maybe once a month for 10 min and will store no chemicals etc..), with just a small operable window, which is not providing %4 area condition.

Some comments say that "Storage Rooms" can be excluded from VRP calculations, but also some refers to ASHRAE 62.1-2007 table for Ra rate to be provided. So my question:

Should I exclude this area with a strong narrative for this prerequisite? or
The natural ventilation with small window for a storage room will be enough although it is not %4 by area?

1
3
0
Julia Weatherby Senior Mechanical Engineer, Lindgren & Sharples, P.C. Mar 22 2015 LEEDuser Member 2087 Thumbs Up

Hello-
My understanding is that a storage room that is visited only once a month for 10 minutes can be classified as "Inactive" Storage. Spaces such as these do not need to be included (per the IAQIndoor air quality: The quality and attributes of indoor air affecting the health and comfort building occupants. IAQ encompasses available fresh air, contaminant levels, acoustics and noise levels, lighting quality, and other factors. matrix spreadsheet), because they are considered unoccupied spaces.
Whether there is a window or not is irrelevant for compliance because the space does not have to be included at all.

2
3
0
Orçun Özhelvacı Quality Engineer - LEED Project Manager, VEN ESCO Mar 24 2015 LEEDuser Member 74 Thumbs Up

Thanks Julia for your comment. Seems like no LEED User experts are replying any questions here any more...

3
3
0
David Hubka Director - Operations, Transwestern Sustainability Services Mar 24 2015 LEEDuser Expert 1790 Thumbs Up

I concur with Julia's comment.

to add:
Inactive storage is further defined as "unoccupied space" thus not requiring ventilation per IEQp1. Be sure to describe the function/use of the room to reviewer when submitting your project.

good luck!

Post a Reply

Start a new LEED comment thread

Jul 31 2015
Type the characters you see in this picture. (verify using audio)
Type the characters you see in the picture above; if you can't read them, submit the form and a new image will be generated. Not case sensitive.

Copyright 2015 – BuildingGreen, Inc.