NC-2009 IEQp1: Minimum IAQ Performance

  • NC Schools IEQp1 credit reqs diagram
  • Baseline for outdoor air ventilation

    This prerequisite establishes a baseline for providing a minimum amount of outdoor air to buildings in order to maintain good indoor air quality and keep occupants comfortable and healthy. This prerequisite references ASHRAE 62.1-2007 (with errata but without addenda) and is often more stringent than local building codes, although it is not likely to entail any added costs.

    Two cases, both may be needed

    The compliance paths for mechanically ventilated and naturally ventilated spaces, Case 1 and Case 2, are somewhat different and you may need to follow both paths for the same building. Naturally ventilated spaces must follow the distinct requirements set out in Case 2, even if other spaces in the same building are mechanically ventilated and are following Case 1. Mixed-mode spaces (with both mechanical and natural ventilation) must follow the compliance path for mechanical ventilation, Case 1.

    New construction additions will need to confirm that any ventilation systems serving the project meet the ventilation rates required by ASHRAE 62.1 2007, even if the ventilation system design itself is outside the scope of the project. If base building systems do not meet the standard’s requirements, you will need to either modify the base building system or provide detailed analysis documenting the constraints and explaining why the base building systems cannot be upgraded.

    ASHRAE 62.1: 2007 vs. 2004

    The 2007 edition of ASHRAE 62.1 combines  62.1-2004 and the eight approved and published addenda to the 2004 edition. The new edition does the following:

    • Clarifies dehumidification analysis requirements and offers exceptions to the 65% relative humidity limit requirement and to the net-positive intake-airflow requirement.
    • Corrects occupant category inconsistencies and provides additional information for several occupancy categories.
    • Updates references and clarifies the text particularly as related to subjective evaluation of air quality.
    • Updates information to be consistent with the U.S. EPA National Ambient Air Quality StandardsThe level of pollutants prescribed by regulations that are not to be exceeded during a given time in a defined area. (EPA).
    • Includes a new  appendix that summarizes the documentation requirements in the body of the standard, thus providing a single point of reference for users.
    • Requires proper design for buildings that contain both ETSEnvironmental tobacco smoke (ETS), or secondhand smoke, consists of airborne particles emitted from the burning end of cigarettes, pipes, and cigars, and is exhaled by smokers. These particles contain about 4,000 compounds, up to 50 of which are known to cause cancer. and ETS-free areas, by requiring classification of areas based on expected presence of ETS, pressurization of ETS-free areas, separation of ETS and ETS-free areas, and cautionary signage for ETS-areas.

    FAQs for IEQp1

    A building has fan-assisted ventilation and no mechanical cooling system. Does this qualify as natural ventilation?

    If the building relies on the fans for daily ventilation, it is considered a mechanically ventilated building.

    Is outdoor air quality testing required in a space using natural ventilation?

    Testing in naturally ventilated spaces is not required per 62.1-2007 Sections 4-7 if the outdoor air quality adequately meets 62.1-2007, Table 4-1.

    For a space designed to be naturally ventilated, can operable windows or vents be used to satisfy the 62.1-2007 requirements?

    Both operable windows and vents can be used, but only the operable area within those elements can be counted towards the minimum percentage (4%) of net occupiable area.

Legend

  • Best Practices
  • Gotcha
  • Action Steps
  • Cost Tip

Pre-Design

Expand All

  • Determine likely ventilation strategies during preliminary programming: natural, mechanical, or mixed-mode ventilation. This prerequisite is attainable with any of these strategies.


  • This prerequisite is paired with IEQc2: Increased Ventilation. If ventilation rates are targeted above the 30% ASHRAE requirement, projects can gain both the prerequisite and a point for EQc2. Projects pursuing IEQc2 may follow the compliance path for natural ventilation found in Chapter 2 of The CIBSE Applications Manual 10 (AM10) for both the prerequisite and for the credit.


  • Many of the strategies that contribute to meeting this prerequisite also support earning other indoor environmental quality credits and should be explored as integrated solutions. See LEEDuser's guidance on the rest of the IEQ section for ideas.


  • Natural ventilation strategies can reduce costs. Natural ventilation in particular can reduce the need for mechanical equipment as well as operational costs. Displacement ventilation, in which air is delivered at or near floor level at a low velocity, can also reduce ducting and improve equipment efficiency. In choosing a system, analyze life cycle cost tradeoffs.


  • Check local building codes to determine requirements. The project must either meet ASHRAE 62.1-2007, or local codes if they are more stringent. Since ASHRAE 62.1-2007 is often more stringent than local codes, be sure to review and be familiar with its requirements.


  • This prerequisite is not likely to require added costs.


  • Case 1: Mechanically Ventilated Spaces


  • Review the Ventilation Rate Procedure methodology in ASHRAE 62.1-2007 Section 6.2 and the associated Table 6-1.


  • ASHRAE 62.1 recognizes two procedures to prove IAQ compliance: the IAQ Procedure methodology and the Ventilation Rate Procedure. The Ventilation Rate Procedure is easier to apply and is the prescribed path for this LEED prerequisite.


  • If you are pursuing IEQc5: Indoor Chemical and Pollutant Source Control, you must incorporate MERV 13 filters into your filtration system. These relatively tight filters may affect the fan power and fan sizes necessary to provide the required quantities of air. Involve the engineer early if pursuing IEQc5. 


  • Demand-controlled ventilation can greatly reduce energy use while providing large amounts of fresh air to occupants.


  • Case 2: Naturally Ventilated Spaces


  • Determine whether natural ventilation is feasible based on the project type, use, and climate.  Study the natural conditions of the site, such as prevailing wind direction, and orient the building to maximize airflow.


  • Review the prescriptive requirements for natural ventilation in ASHRAE 62.1-2007 Paragraph 5.1 (with errata but without addenda).


  • An integrated design meeting will help determine whether natural ventilation is a high priority and should be a primary driver of the design process.


  • Airflow modeling early in the design process can help teams create a more effective natural ventilation design. If the data is used early in the design to help inform team on such thing as space planning and building envelope design. An airflow modeling professional may add some upfront costs, while likely improving system efficiency and effectiveness.


  • Consider the cost implications of natural ventilation. Passive strategies may reduce or eliminate the need for fans and HVAC equipment, but they may also require high quantities of operable windows and a floor plan that is conducive to passive ventilation.  Natural ventilation often requires the cooperation of occupants, to open and close windows when appropriate, for example, be sure that your project is likely to succeed in this respect.

Schematic Design

Expand All

  • Determine the required ventilation rates for indoor spaces based on occupancy and space types.  ASHRAE 62.1-2007 tables 6-1 and 6-4 list minimum requirements for particular spaces.


  • Separately evaluate each space to determine air requirements and what type of ventilation will be best.  Metabolic rate of the space activities and the occupant density are factors that determine the amount of fresh air needed in a space.  For example, exercise rooms and conference rooms require more fresh air than offices.


  • An integrated design approach among the mechanical engineer, architects, owners and occupants will facilitate design decisions that impact the HVAC design. For example, space planning decisions will impact the architectural programming of the space as well as access to natural ventilation.


  • Increasing a project’s ventilation rate brings long-term cost benefits. Good indoor air quality can lower operational costs by increasing occupants’ health and productivity as well as the value and marketability of the building.


  • For mixed-mode and naturally ventilated spaces, the mechanical engineer should calculate the outdoor airflow rate and communicate the area requirements for operable wall or roof openings to the architect.


  • The mechanical engineer begins preliminary ventilation rate calculations during project programming in order to set ventilation quality goals for particular spaces and occupancies. The area of a given multi‐zone system should be broken down by ventilation zones, and all zones within that system must meet the minimum breathing zone ventilation air requirements as per ASHRAE 62.1‐2004. For a typical office space, the mechanical design consists of multiple ventilation zones for which compliance would need to be shown on an individual basis.


  • Case 1 Mechanically Ventilated Spaces


  • For mixed-mode ventilation, zone the plan into areas—mechanically ventilated and naturally ventilated—and follow separate compliance calculations for each area.


  • Case 2 Naturally Ventilated Spaces


  • Determine the applicable floor area for operable wall or roof openings according to ASHRAE 62.1-2007 section 5.1.


  • Consider using Computational Fluid Dynamics (CFD) modeling to determine proper opening sizes and ensure proper airflow. Some energy modeling programs also have CFD analysis capabilities.


  • Expect upfront modeling fees for Computational Fluid Dynamics (CFD), but also consider the benefits of CFD modeling: a better-designed natural ventilation system that can bring short-term payback from reduced mechanical systems, and long-term operational savings.


  • At the first integrated design meeting during schematic design, develop a detailed natural ventilation strategy involving goals for windows, building orientation, space planning, use of atriums, and other access to natural ventilation. Natural ventilation systems may require a more robust and intense integrated design process, of several focused workshops analyzing several alternatives. Computer modeling may be necessary to test various design alternatives to determine which is most effective and efficient.


  • Hotel and multifamily projects may have difficulty achieving this prerequisite if they are naturally ventilated and have interior spaces that are further than 25 feet from an operable wall or roof opening. These projects might consider increased window areas, shallower floor plates, or using mixed-mode ventilation so that mechanically supplied outdoor air can support areas outside the 25-foot natural ventilation boundary.

Design Development

Expand All

  • The mechanical engineer continues to run ventilation rate calculations during the mechanical design process to inform design development and confirm compliance with this prerequisite. The ventilation rate procedure is explained in section 6 of ASHRAE 62.1-2007. See the attached 62MZ calculator.


  • Continuing to use an integrated design approach among the mechanical engineer, architects, owners and end users will facilitate design decisions that impact the mechanical design. For example, space planning decisions will impact the architectural programming of the space as well as access to natural ventilation.


  • Strategically locate air intakes for mechanical or natural ventilation systems to avoid taking in contaminants and odors like vehicle exhaust from parking lots or fumes from garbage storage areas.


  • Incorporating operable windows into the design for natural and mixed-mode ventilation can help with an additional LEED point for EAc6.1: Controllability of Systems—Thermal Comfort.


  • Case 1: Mechanically Ventilated Spaces


  • Continue running ventilation rate calculations during the mechanical design process to confirm compliance with this credit and to inform the design. The ventilation rate procedure is explained in section 6 of ASHRAE 62.1-2007. See the 62MZ calculator.


  • Implement energy recovery systems, economizers, low-pressure-drop design, and efficient fans as appropriate to support ventilation rates meeting or exceeding the referenced ASHRAE standard without compromising energy performance.


  • Avoid oversizing mechanical equipment. Oversized equipment will often increase operating costs and reduce operational efficiency. The correct equipment size will depend on a number of factors, including local climate, total building area, insulation levels, air filtration medium, number of windows and doors, and occupant comfort preferences.


  • Spaces served by the same VAV (variable air volume) controller can be grouped together in the 62MZ calculator, but grouped spaces should have similar exterior exposure. For example, you can group two perimeter spaces that share a VAV controller, but would want to separate a non-perimeter space even if it shares the same VAV controller.


  • Laboratory facilities generally require very high ventilation rates. Consider installing separate mechanical systems for lab spaces to maximize return-air mixing. Other strategies may include using a heat exchanger to capture energy from laboratory exhaust, using low-flow or variable-flow fume hoods, minimizing ventilation rates during unoccupied times, or using a dedicated outdoor air system.


  • Integrating building automation systems can control mechanical systems efficiently and maintain desired ventilation rates while minimizing unscheduled maintenance.


  • The Ventilation Rate Procedure calculation includes occupancy counts based on space types.


  • Case 2: Naturally Ventilated Spaces


  • Continue to run calculations and develop flow diagrams to inform the design process and confirm compliance. If you are using a natural ventilation modeler for the project, use the model as a tool to inform design development.


  • The calculation for operable openings will only apply to the floor area adjacent to the window—25 feet to either side and in front of the opening.


  • The surface area of window openings must, for compliance with ASHRAE 62.1, be equal to or greater than 4% of the occupied floor area that the design considers naturally ventilated. Multiple windows in aggregate can provide the operable area needed to meet the requirements.


  • In naturally ventilated multifamily buildings, air infiltration from a pressurized hallway or corridor can contribute to the Ventilation Rate Procedure calculation for areas that do not meet the requirements of ASHRAE 62.1, as long as the corridor is pressurized with outdoor air.

Construction Documents

Expand All

  • For mechanically ventilated spaces, run ventilation calculations to verify that the final design meets the minimum outside air rates equal to or exceeding the ASHRAE 62.1-2007 minimum.


  • For naturally ventilated spaces, confirm compliance with the requirements of ASHRAE 62.1-2007 section 5.1.


  • If natural ventilation strategies are integrated into the design, ensure that key elements of the natural ventilation system, such as operable windows, window actuators, controls, operable atrium elements, and solar chimneys, are not compromised during value engineering. Educate decision-makers about the natural ventilation design and the importance of maintaining all the key components. If these elements are altered in a way that compromises natural ventilation rates, the mechanical system may no longer be sized appropriately.


  • Fill out the LEED credit form and upload all supporting documents to LEED Online.


  • Use this checklist for naturally ventilated spaces prior to construction to review plans for prerequisite compliance:

    • Are all floor areas within 25 feet of an operable window?
    • Do all floor areas within 25 feet of an operable window appear have 4 ft2 of opening per 100 ft2 of floor area?
    • Is fresh outdoor air mechanically supplied and exhausted for all regularly occupied spaces beyond 25 feet of an operable window?
    • Do any corridors or entryways fall outside of these naturally or mechanically ventilated areas? If so, develop the design further to supply sufficient ventilation.

  • Use this checklist for mechanical systems prior to construction to check prerequisite compliance:

    • Using the mechanical equipment schedule, confirm that outside air is being supplied to mechanically ventilated spaces.
    • Do you have calculations showing the outside air required by ASHRAE 62.1-2007 for mechanically ventilated spaces separate from naturally ventilated spaces?
    • Do outside air rates meet or exceed the calculated ASHRAE minimums?
    • Are all regularly occupied spaces listed in the ASHRAE calculations?
    • What is the desired MERV filtration? If using a high level of ventilation to meet EQc5, has the mechanical system been sized accordingly?

Construction

Expand All

  • Coordinate the installation of ventilation systems with the project’s commissioning process.


  • Use commissioning to confirm that installed systems are providing the outside air rates specified in the design. 

Operations & Maintenance

Expand All

  • Monitor outdoor air delivery periodically to confirm that minimum ventilation rates are being maintained. Implement a maintenance program to ensure that mechanical system components are functioning properly.


  • Test all dedicated building exhaust systems including chemical areas, bathroom, shower, kitchen, and parking exhaust systems to confirm proper fan speed, voltage, control sequences, and set points as applicable. Provide operations and maintenance personnel with manuals and educate them about any atypical maintenance requirements.


  • Getting feedback on ventilation performance from occupants through surveys can help to identify potential problems that may become expensive if they go unnoticed.


  • A documented ventilation performance plan can help ensure that systems reach the expected ventilation thresholds.


  • In projects with operable windows, occupants may not know when conditions are best for opening the windows. Implement a system so that occupants are informed of when to open and close the windows to achieve designed performance and optimal comfort.


  • Maintain a building operating plan (BOP) that establishes operating schedules and set points and regularly review these parameters against actual building needs. When developing these parameters, consider both time-of-day and time-of-year variations in optimal temperature requirements and be careful to avoid over-conditioning the building spaces with more ventilation, heating or cooling than is necessary.


  • Adjust reset and setback temperature settings and calibrate controls and sensors. A Building Automation System (BAS) will allow building managers to adjust, monitor and control temperature set points and air volumes throughout the building from a central location. Direct digital controls (DDC) utilized by the BAS will function more efficiently than older pneumatic controls and help to avoid unnecessary use of HVAC equipment during non-business hours and holidays.


  • Develop and implement a comprehensive Indoor Air Quality Management Plan using the EPA’s “Indoor Air Quality Building Education and Assessment Model” (I-BEAM).

    • Assign an IAQ manager. This individual should be responsible for developing and managing the IAQ plan including managing contracts for IAQ related services and communication with building occupants about IAQ related issues.
    • Conduct an IAQ audit of the building and grounds to determine IAQ status. Use forms provided by I-BEAM to record the basic conditions of the building’s occupied spaces, mechanical systems, and building exterior.

  • Following the initial audit, the IAQ manager must make periodic inspections to uncover new IAQ issues and monitor the status of previous issues. The I-BEAM tool supplies inspection forms that can be tailored to the project building to facilitate this process.


  • Establish protocols to manage all significant pollutant sources referenced in I-BEAM that are applicable to the project building.


  • Ensure that procedures are in place for receiving and responding to IAQ complaints from building occupants. The I-BEAM tool provides sample forms and logs for fielding and recording occupant complaints as well as information about key principles for developing effective communication with building occupants regarding IAQ issues. Strategies for investigating and resolving the issues that trigger occupant complaints are covered by a variety of I-BEAM guidelines.

  • USGBC

    Excerpted from LEED 2009 for New Construction and Major Renovations

    IEQ Prerequisite 1: Minimum IAQ Performance

    Required

    Intent

    To establish minimum indoor air quality (IAQIndoor air quality: The quality and attributes of indoor air affecting the health and comfort building occupants. IAQ encompasses available fresh air, contaminant levels, acoustics and noise levels, lighting quality, and other factors.) performance to enhance indoor air quality in buildings, thus contributing to the comfort and well-being of the occupants.

    Requirements

    CASE 1. Mechanically Ventilated Spaces


    Mechanical ventilation systems must be designed using the ventilation rate procedure as defined by ASHRAE 62.1-2007, or the applicable local code, whichever is more stringent.

    OPTION 1. ASHRAE Standard 62.1-2007 or Non-U.S. Equivalent

    Meet the minimum requirements of Sections 4 through 7 of ASHRAE Standard 62.1-2007, Ventilation for Acceptable Indoor Air Quality (with errata but without addenda). Projects outside the U.S. may use a local equivalent to Sections 4 through 7 of ASHRAE Standard 62.1-2007.

    OR

    OPTION 2. CEN Standards EN 15251: 2007 and EN 13779: 2007

    Projects outside the U.S. may earn this prerequisite by meeting the minimum requirements of Annex B of Comité Européen de Normalisation (CEN) Standard EN 15251: 2007, Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics; and the requirements of CEN Standard EN 13779: 2007, Ventilation for nonresidential buildings, Performance requirements for ventilation and room conditioning systems, excluding Section 7.3 – Thermal environment, 7.6 – Acoustic Environment, A.16, and A.17.


    CASE 2. Naturally Ventilated Spaces


    Naturally ventilated buildings must comply with ASHRAE Standard 62.1-2007, Paragraph 5.1 (with errata but without addenda). Project teams wishing to use ASHRAE approved addenda for the purposes of this prerequisite may do so at their discretion. Addenda must be applied consistently across all LEED credits.

    Potential Technologies & Strategies

    Design ventilation systems to meet or exceed the minimum outdoor air ventilation rates as described in the ASHRAE standard. Balance the impacts of ventilation rates on energy use and indoor air quality to optimize for energy efficiency and occupant comfort. Use the ASHRAE Standard 62.1-2007 Users Manual (with errata but without addenda1) for detailed guidance on meeting the referenced requirements.

    FOOTNOTES

    1 Project teams wishing to use ASHRAE approved addenda for the purposes of this prerequisite may do so at their discretion. Addenda must be applied consistently across all LEED credits.

Technical Guides

IEQ Space Matrix - 2nd Edition

This updated version of the spreadsheet categories dozens of specific space types according to how they should be applied under various IEQ credits. This document is essential if you have questions about how various unique space types should be treated. Up to date, 2nd Edition.


ASHRAE 62.1-2007: Outdoor Airflow Monitoring Devices.

ASHRAE 62.1-2007 should be referenced when designing outdoor airflow monitoring devices.


IEQ Space Matrix - 1st Ed.

This spreadsheet categories dozens of specific space types according to how they should be applied under various IEQ credits. This document is essential if you have questions about how various unique space types should be treated.  This is the 1st edition.

Publications

Greening the Building and the Bottom Line

This Rocky Mountain Institute publication is a case study of the connection between worker productivity and indoor air quality.


Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems, 7th ed. (National Environmental Balancing Bureau, 2005)

This manual provides information on the technology and techniques for the design, operation, servicing, and balancing of environmental systems.

Organizations

American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)

ASHRAE publishes widely used standards and publishes the ASHRAE Journal.


Labs for the 21st Century (Labs 21)

Labs21 is a voluntary partnership program dedicated to improving the environmental performance of U.S. laboratories.


Indoor Air Quality Association

IAQA is a nonprofit organization dedicated to promoting the exchange of indoor environmental information through education and research.


Mechanical Service Contractors of America

MSCA is a national trade association that provides educational resources and training programs on sustainable service and maintenance practices for HVACR contractors.


CIBSE Applications Manual 10-2005

Located in London, this organization publishes a series of guides on ventilation, including natural ventilation.

Web Tools

Energy Cost and IAQ Performance

This website contains reports from an extensive EPA modeling study that assessed the compatibilities and trade-offs between energy, indoor air quality, and thermal comfort objectives for HVAC systems and formulated strategies to achieve superior performance.

Software Tools

62MZ Calculator: Ventilation Rate Procedure

This is a Microsoft Excel calculator that accompanies the ASHRAE 62.1 reference standard. The calculator allows users to plug in variables for specific project types and run the Ventilation Rate Procedure.


CONTAM 3.0 Multizone Modeling Software

Public domain software from NIST (National Institute of Standards and Technology) that has natural ventilation sizing tools, and flow models to analytically predict room-by-room airflows.


Loop DA Multizone Modeling Software

Public domain software from NIST (National Institute of Standards and
Technology) that has natural ventilation sizing tools, and flow models
to analytically predict room-by-room airflows.


ASHRAE 62.1 iPhone App

ASHRAE released an app for iPhone, iPod touch, and iPad that allows you to perform comprehensive minimum ventilation calculations for a wide variety of commercial buildings based upon Standard 62.1, using either I-P or SI units. This app is based upon the 62MZCalc.xls. Now, you can make calculations at a meeting and know if your project meets IEQp1 or IEQc2.

Ventilation Rate Table

This example ventilation rate table from 23 High Line provides guidance when developing prerequisite compliance documents for your project.

Air Riser Diagram

This example air riser diagram from 23 High Line shows the mechanical ventilation supply for the building. It is the ducted diagram showing how air will be supplied to building occupants. Use this as an example for how to document ventilation effectiveness compliance.

Mechanical Systems Schedule

Use this example mechanical schedule created from 23 High Line for guidance when developing ventilation effectiveness compliance documents for your project.

LEED Online Forms: NC-2009 IEQ

The following links take you to the public, informational versions of the dynamic LEED Online forms for each NC-2009 IEQ credit. You'll need to fill out the live versions of these forms on LEED Online for each credit you hope to earn.

Version 4 forms (newest):

Version 3 forms:

These links are posted by LEEDuser with USGBC's permission. USGBC has certain usage restrictions for these forms; for more information, visit LEED Online and click "Sample Forms Download."

Design Submittal

PencilDocumentation for this credit can be part of a Design Phase submittal.

782 Comments

0
0
Spencer Eldredge Associate Engineer Weston Solutions, Inc.
Sep 25 2014
Guest

FTE Consistency Pertaining to IEQp1

Project Location: United States

The need to keep FTEs consistent through all credits is stressed though in the case of IEQp1 where for Mechanical Ventilation, table IEQp1-3, for code compliance based on square footage, the Pz (zone population) numbers provided by our Mechanical Designer are far greater than those anticipated for FTE.

In reality, the ventilation system is designed to meet code for far more occupants than will ever be expected. I am wondering if this inconsistency would flag consideration by a reviewer.
FTE=86, Total Peak Occupants = 226.
Total Pz=310

1
1
0
Hernando Miranda Owner, Soltierra LLC Sep 29 2014 Guest 7489 Thumbs Up

The requirement for FTEs to match goes back to an error made by the LEED v2 Reference Guide authors. The error creates a huge loophole for projects that do not actually meet the requirements of ASHRAE 62.1. It has been more than 10 years and the error still exists. Based on my 15 years of working with the USGBC, and 4 years as the vice-chair of the IEQ Technical Advisory Group, it will never be corrected.

Engineers should NEVER use LEED calculations as the basis for sizing a ventilation system. That would create a design liability problem.

Post a Reply
0
0
Charalampos Giannikopoulos
Sep 24 2014
LEEDuser Member
56 Thumbs Up

Design System Primary supply Airflow (Vpsd)

For a VAVVariable Air Volume (VAV) is an HVAC conservation feature that supplies varying quantities of conditioned (heated or cooled) air to different parts of a building according to the heating and cooling needs of those specific areas. (multiple-zone) system should the Design System Primary supply Airflow (Vpsd) sum up the total supply (and not the outdoor) air of each zone? Accordingly, should the Vdzd figure for each zone of a multiple-zone system reflect the supply airflow of that particular zone?
If this is the case, the Vpsd figure should match the Supply Airflow figure entered in the EAp2 Spreadsheet – Table 1.4.7B.
Is the assumption described above correct? Thank you in advance.

Post a Reply
0
0
Ritwik Kakati Dagher Engineering, PLLC
Sep 22 2014
Guest
52 Thumbs Up

ASHRAE definition of "kitchenette"

Project Location: United States

Does anyone know how ASHRAE defines a "kitchenette" from a regular kitchen? I am trying to determine which value I should use from Table 6-4 of 62.1-2007. I know NYC code defines a kitchenette as less than 80 SF, but I didn't see any definition on 62.1 or 62.1 User Manual. Thanks!

1
7
0
Hernando Miranda Owner, Soltierra LLC Sep 22 2014 Guest 7489 Thumbs Up

ASHRAE does not define what a kitchen or a kitchenette is. Generally, if a small kitchen does not have an oven, and it is small in area, it can be called a kitchenette.

In a kitchen, you can do full food preparation because there is not enough room to do that; the countertop area is too small. In a kitchenette you basically store and reheat precooked food, or cook very simple meals.

2
7
0
Rudolph Carneiro HVAC consultant, Sustentech Sep 22 2014 Guest 582 Thumbs Up

I disagree. Kitchens and kitchenettes both have ovens. A kitchenette is not the same as a break room that requires outdoor air. Kitchenettes have small residential style ovens (usually just one) and kitchens have industrial equipment for mass food production. If you have a small room for food preparation (eg. with a microwave), I would consider it a break room and not require exhaust but require outdoor air.

3
7
0
Hernando Miranda Owner, Soltierra LLC Sep 22 2014 Guest 7489 Thumbs Up

Well I disagree back. Kitchenettes do not typically have ovens. The reason you need additional exhaust in a kitchen/kitchenette is to control humidity (5.10.1, Exception). Kitchens that have industrial equipment should be considered commercial kitchens.

ASHRAE does not define the differences between kitchenettes, kitchens (residential), or commercial kitchens, but each of these require a different exhaust rate in the standard. You are left to your own to figure these out, but an oven does increase humidity so should require special exhaust which is not required for a simple break room.

4
7
0
Rudolph Carneiro HVAC consultant, Sustentech Sep 22 2014 Guest 582 Thumbs Up

If humidity control is the method to evaluate wether or not to exhaust a space, then the table shows us that kitchenettes have ovens. Both need exhaust per table 6-4.
But humidity is not the criteria because 5.10.1 exempts kitchens from humidity limits.
Ovens in kitchens and kitchenettes produce significantly contaminated exhaust. Microwaves in break rooms dont.
Notice that showers dont have exhaust requirements.

5
7
0
Ritwik Kakati Dagher Engineering, PLLC Sep 22 2014 Guest 52 Thumbs Up

Hernando, Rudolph, thank you for your responses. To clarify, my project in question are apartments, so the "Residential Kitchens" category is most applicable, but I was curious if ASHRAE clearly delineates kitchenettes like NYC code does. Seems like it doesn't, so it appears it is left to our judgement to determine which category to use.

6
7
0
Hernando Miranda Owner, Soltierra LLC Sep 22 2014 Guest 7489 Thumbs Up

Rudolph,

Humidity is the criteria to determine whether a kitchen rate applies. Humidity is not a criteria for break rooms. If a break room has a microwave it should be okay to claim the space as a break room. If a break room has an oven or range top cooker, then use the ASHRAE required exhaust rates.

Microwaves do create odor and generate humidity. This is easy to observe if you wrap a meal in a ceramic container with clear plastic, like Saran Wrap. The wrap traps in the moisture, and if you open it after the food is cooked it releases a lot of steam (humidity). I believe it is okay to exclude microwaves from exhaust requirements because they not heavily used in break rooms.

In terms of showers, I have yet to see a project that did not include exhaust in shower rooms. ASHRAE 62.2 has an exhaust requirement for bathrooms. Bathrooms are any room containing a bathtub, shower, a spa, or a similar source of moisture. Controlling humidity in moisture generating spaces is not a requirement, as you noted.

7
7
0
Hernando Miranda Owner, Soltierra LLC Sep 22 2014 Guest 7489 Thumbs Up

Ritwik,

Use your own judgement. Just be aware that the LEED reviewers might question your assumptions. Make sure your assumption are reasonable, and logical, and make some references to the ASHRAE Standard.

Post a Reply
0
0
Ivan Souza Sustainability Consultancy Services Cushman & Wakefield
Sep 18 2014
LEEDuser Member
875 Thumbs Up

Local Jurisdiction Approval?

Hi,

What is "the local jurisdiction approval"?

You know what this is? How do I get this approval? With the designer?

I've worked in other certificate were accepted sizing calculations showing the natural ventilation system only.

Thank you!

1
4
0
Hernando Miranda Owner, Soltierra LLC Sep 18 2014 Guest 7489 Thumbs Up

Ivan,

1) Show that the project complies with local jurisdictional, minimum ventilation requirements, if the local requirements exist.

2) Show that the project complies with the LEED/ASHRAE minimum ventilation requirements.

Since the project complies with both LEED and local requirements "whichever is more stringent" is proven. There is no reason to compare the two sets of requirements to each other.

2
4
0
Ivan Souza Sustainability Consultancy Services, Cushman & Wakefield Sep 18 2014 LEEDuser Member 875 Thumbs Up

Thanks Hernando.

The situation I have is that I have a project of a warehouse where there is natural ventilation in coverage.

This ventilation is "Enginnered Natural Ventilation System".

I showed all sizing calculations, and was asked about this approval of jurisdiction.

This ventilation is an exception from section 5.1 of ASHRAE 62.1 but do not know how to prove this, since the document submitted is the natural ventilation calculation description, considering all of the local climate parameters.

I need to ask something the ventilation designer, or just explain better what was considered?

Best Regards.

3
4
0
Hernando Miranda Owner, Soltierra LLC Sep 18 2014 Guest 7489 Thumbs Up

Ivan,

You can compare the design air changes per hour (ACHAir changes per hour: The number of times per hour a volume of air, equivalent to the volume of space, enters that space.) to the Vot (zone outdoor air flow) calculated using the ASHRAE 62.1 calculations: Sections 6.2.2 (Vbz = [Rp x Pz] + [Ra x Az]; and then Voz=Vbz/Ez) and either 6.2.3 (Single-Zone) or 6.2.4 (100% OA). Vot will likely be equal to Voz.

Your Ez is probably 0.8 (see ASHRAE 62.1 Table 6-2). It might be 1.0 but claiming a lower Ez helps avoid further questions from the reviewers.

4
4
0
Ivan Souza Sustainability Consultancy Services, Cushman & Wakefield Sep 18 2014 LEEDuser Member 875 Thumbs Up

Ok! Now i know how to prove this. This helped a lot.

Thanks Hernando!

Post a Reply
0
0
Lawrence Lile Chief Engineer Lile Engineering LLC
Sep 15 2014
LEEDuser Member
1442 Thumbs Up

VRP Compliance Calculator in Appendix

I am trying to understand the VRP Compliance Calculator at the end of the template. I have completed the 62MZCalc spreadsheet, and it comes up with one answer for 30% increased ventilation. Our project complies with this number. If I enter data into the VRP Compliance Calculator, it spits out a larger number for 30% increase, and our project does not comply. Is this VRP Calculator required if one has already proved compliance with 62MZcalc? Under what circumstances is it mandatory to use it? Is it optional?

1
4
0
Hernando Miranda Owner, Soltierra LLC Sep 15 2014 Guest 7489 Thumbs Up

Unless the ventilation efficiency of every zone served by a system is identical the OA required will not be 30%. The total OA is driven by the zone that has the lowest Evz. If one zone has an Evz of 0.80, and all of the others an Evz of 1.00, the ASHRAE standard uses the 0.80 value to determine the OA. The zone with the 0.80 Evz is the critical zone.

Check to see what the range of values of your Evzs are. If they are far apart then the ventilation flows to each zone need to be adjusted. One solution is to rebalance (redistribute) the airflows to the zones. Take reduce the ventilation air to the highest Evz zones and use it in the lowest Evz zone.

2
4
0
Lawrence Lile Chief Engineer, Lile Engineering LLC Sep 15 2014 LEEDuser Member 1442 Thumbs Up

Sorry, I am not quite sure the question was clear. We are trying to achieve the IEQc2 30% increased ventilation credit. (This hasn't got anything to do with 30% outside air, it has to do with achieving the IEQc2 Credit). According to the 62MZcalc spreadsheet, we comply. Is the "VRP Compliance Calculator" located on the IEQp1 Template a required submittal or is it optional?

3
4
0
Hernando Miranda Owner, Soltierra LLC Sep 15 2014 Guest 7489 Thumbs Up

To achieve EAc2 with 30% OA at the zone level you will require more than 30% OA intake at the system level. The further away you are from 30% at the system level, the more out of balance the zones in the system are.

4
4
0
Michelle Robinson Re:Vision Architecture Sep 16 2014 LEEDuser Member 700 Thumbs Up

Hi Lawrence,
It's my understanding that if you're using the 62MZCalc spreadsheet you do NOT have to do the VRP Compliance Calculator or complete Appendix 1 of the LEED Credit Form. You upload your 62MZCalc files, fill in the end result values from 62MZCalc into Table IEQp1-2 on the LEED Credit Form for the "Offline Calculator," and I believe the only "logic" it has built in is simply the Yes/No evaluation -- no math, and no entries in Appendix 1.
Let us know if that doesn't work for you.

Post a Reply
0
0
Michael Wironen Ecology and Environment, Inc.
Sep 03 2014
LEEDuser Member
329 Thumbs Up

100% OA multiple-zone system

Hi,

I'm a little confused about a review comment we received. We have rooftop AHUs supplying 100% Outdoor Air to multiple zones equipped with terminal fan coil units. The terminal fan coils mix the OA with locally recirculated air to meet heating and cooling requirements.

We used the 62MZCalc form to document compliance with ASHRAE 62.1 since it is a multiple zone system. Per the reviewer's comment, we cannot do this as the system is 100% OA.

However, the LEED form itself does not allow you to factor in diversity at the level of the AHU. This is a university building with a mix of uses and occupancy schedules and so it will never be 100% occupied at max occupancy. Will LEED reviewers allow you to use a population diversity factor when working with 100% OA systems?

1
2
0
Julia Weatherby Senior Mechanical Engineer, Lindgren & Sharples, P.C. Sep 03 2014 LEEDuser Member 1458 Thumbs Up

Hello, Michael-

The ventilation requirement has to be satisfied for each individual space. Therefore, if you are not recirculating "unused" outdoor air from some spaces, it doesn't seem that population diversity would be relevant for the individual room calculations. You would need to provide enough outdoor air through the 100% outdoor air system to satisfy the ventilation requirements for the design occupancy in each space.

For airflow at the AHU1.Air-handling units (AHUs) are mechanical indirect heating, ventilating, or air-conditioning systems in which the air is treated or handled by equipment located outside the rooms served, usually at a central location, and conveyed to and from the rooms by a fan and a system of distributing ducts. (NEEB, 1997 edition) 2.A type of heating and/or cooling distribution equipment that channels warm or cool air to different parts of a building. This process of channeling the conditioned air often involves drawing air over heating or cooling coils and forcing it from a central location through ducts or air-handling units. Air-handling units are hidden in the walls or ceilings, where they use steam or hot water to heat, or chilled water to cool the air inside the ductwork. level, if you have a way to reduce or shut off outdoor air to individual spaces when the room is at reduced or no occupancy (such as shut off or modulating dampers on the outdoor air duct to the room controlled by CO2Carbon dioxide sensors and/or occupancy sensors), then you could explain that your design cfm for the 100% OA AHU does not need to add up to the full OA design cfm sum of all the spaces due to occupant and scheduling diversity. If the LEED form does not provide for this, you can provide your own calculations and explanation under the Special Circumstances section.

2
2
0
Michael Wironen Ecology and Environment, Inc. Sep 04 2014 LEEDuser Member 329 Thumbs Up

Thanks! That is exactly our scenario - we have demand controlled ventilation and so airflow is adjusted to meet occupancy levels.

Post a Reply
0
0
Ritwik Kakati Dagher Engineering, PLLC
Sep 02 2014
Guest
52 Thumbs Up

Engineered ventilation system - operable windows

In our high-rise multifamily building project, we are trying to demonstrate IEQp1 compliance for living rooms & bedrooms by showing an engineered ventilation system whereby toilet exhaust fans draw enough outside air through operable windows in said rooms to satisfy 62.1 rates. However, the LEED reviewer is asking for documentation on how the required ventilation rates would be met when the windows are shut closed. From my understanding, simply having operable windows is sufficient to demonstrate 62.1 compliance, and since the windows can be opened or closed by the occupants when needed, it is not necessary to show compliance with windows closed. Can anyone add their thoughts on this? Thanks!

1
1
0
Julia Weatherby Senior Mechanical Engineer, Lindgren & Sharples, P.C. Sep 02 2014 LEEDuser Member 1458 Thumbs Up

There are two paths for showing ventilation compliance for an individual space or ventilation zone:
Path 1 - Mechanical ventilation. In this case, you cannot take credit for opening windows. And this is where ASHRAE 62.1 mechanical ventilation rates apply.
Path 2 - Natural ventilation. In this case for NC2009, operable windows are sufficient, subject to area and distance requirements for the windows. You could probably make a special circumstances or alternative compliance case for extending the distance from the window due to the assistance of the toilet exhaust fan, but ASHRAE 62.1 ventilation rate do not really apply to the natural ventilation case.

I think you will get more traction by clearly identifying which path you are taking (either Mechanical Ventilation or Natural Ventilation) and sticking to that path. If you blend the criteria for the two paths together indiscriminately, it will be unlikely to be accepted.

For example, you could say for Alternative Compliance that you are using the natural ventilation path, show that you have the required percentage of operable window area, and then introduce the concept of "fan-assisted" natural ventilation to justify any areas farther than the 25 feet criteria away from the window.

Post a Reply
0
0
LEEDme STRATEGIE D'IMPRESA
Sep 02 2014
LEEDuser Member
70 Thumbs Up

Engineered ventilation rates

We are working on a office building in which there is an openspace. The outside openings largely cover 4% of the total floor area. A small part of the open space areaOpen space area is usually defined by local zoning requirements. If local zoning requirements do not clearly define open space, it is defined for the purposes of LEED calculations as the property area minus the development footprint; it must be vegetated and pervious, with exceptions only as noted in the credit requirements section. Only ground areas are calculated as open space. For projects located in urban areas that earn a Development Density and Community Connectivity credit, open space also includes nonvehicular, pedestrian-oriented hardscape spaces. falls outside the distance of 7.6 m from the openings. For this part of space I have to provide an engineered ventilation dimensioned only on the area that falls beyond 7.6m? Or the engineered ventilation system shall be sized on the total openspace area?

Alberto-LEEDme

Post a Reply
0
0
Lawrence Lile Chief Engineer Lile Engineering LLC
Sep 01 2014
LEEDuser Member
1442 Thumbs Up

Minimum Ventialtion Rates: Locker Rooms

I am working on a project which has an employee locker room, where truck drivers will come to change or shower after their shifts once a day. It isn't a heavy-use locker room like you'd find in a school. I'm not finding any spaces in ASHRAE 62 Table 6-1 that look very similar to this usage. What would be a reasonable People Outdoor Air Rate and Area Outdoor Air rate for such a space? The ASHRAE 62 Users Manual Table 6A might also shed some light.

Post a Reply
0
0
Emmanuel Pauwels Owner Green Living Projects s.l.
Aug 25 2014
LEEDuser Member
2185 Thumbs Up

Recirculated Air

We are working on a small building that will operates for conferences and private events.
There will be a kitchenette or coffee point (only microwave, coffe maker and refrigerator). The space will not have exhaust air since no food will be prepared in it.
For the purpose of this prerequisite, would be acceptable to provide recirculated air from the corridor to the Coffee point in order to satisfy the requirements of the Minimum ventilation rate?
Ie, does Ashrae 62.1-2007 requires that outdoor air is supplied directly to each single space or it allows the use of recirculated air, not mixed with any outdoor air?
Thanks

Post a Reply
0
0
Pedro Ribeiro Director of Sustainability Edifícios Saudáveis Consultores
Aug 20 2014
LEEDuser Member
703 Thumbs Up

Outdoor air requirements in corridors

I' m currently working on a school project where most of the corridors have an exhaust system, that induces make-up air from the adjacent classrooms and (eventually negligible) infiltrated air directly from outdoors (due to windows permeability). Does this situation allows to comply with ASHRAE 62.1 outdoor air requirements for corridors, consideringa a ventilation distribution efficiency of 0.5? Should all the transfer air be considered as outdoor air, or only the "excess" (outdoor air supplied in classrooms that exceed its outdoor air requirements) outdoor air portion of the total transfer air? Thanks.

Post a Reply
0
0
Alicja Bieszyńska Skanska
Aug 14 2014
LEEDuser Member
1035 Thumbs Up

ventilation through docks

Hi all,

I'm working on a distribution center project that intakes the air by docks and exhusts it through fans in the roof. Is it natural or mechanical ventilation?

Another question concerns the ASHRAE requirement which says that Air Intake Minimum Separation Distance from the truck loading area or dock should be 25 feet. In my case it's impossible as the dock is the air intake. Is there any exception to this requirement?

Post a Reply
0
0
Noriko Yasuhara CSR Design & Landscape Co., Ltd.
Aug 07 2014
LEEDuser Member
1743 Thumbs Up

warehouse and storage room difference - table 6-1

What is the difference between storage room and warehouse in table 6-1 of ASHRAE 62.1-2007? Storage rooms need twice the ventilation required for warehouses. Is it correct to say that the difference is mainly in area, storage rooms being smaller and warehouses being larger? Both spaces are marked with a "B" meaning that the ventilation may depend on the type of material stored ("rate may not be sufficient when stored materials include those having potentially harmful emissions.").

Thanks in advance!

1
5
0
Andrew Mitchell, P.E. Mechanical Engineer / LEED Coordination Manager, Moses & Associates Aug 08 2014 LEEDuser Expert 2434 Thumbs Up

The difference is area. Warehouses are meant to have a lot of operational space which decreases storage density.

2
5
0
Rudolph Carneiro HVAC consultant, Sustentech Aug 08 2014 Guest 582 Thumbs Up

Another factor is that a warehouses' vertical height is much greater than for storage rooms and therefore air from chemical contents in storage rooms more quickly saturates the air with polutants. Read the section in ASHRAE 62.1 on time averaging.

Andrew: do you know if GBCI has incorporated time averaging into the v5 IEQP1 template?

Its obvious to me that they have not since there is no room height input.

3
5
0
Andrew Mitchell, P.E. Mechanical Engineer / LEED Coordination Manager, Moses & Associates Aug 08 2014 LEEDuser Expert 2434 Thumbs Up

I think you answered your own question correctly. They do not have inputs for room height or occupancy schedules. The time average is only useful for spaces with high intermittent occupant loads.

4
5
0
Noriko Yasuhara CSR Design & Landscape Co., Ltd. Aug 18 2014 LEEDuser Member 1743 Thumbs Up

Thank you!

5
5
0
Rudolph Carneiro HVAC consultant, Sustentech Sep 11 2014 Guest 582 Thumbs Up

Andrew: I think It's usefullness is directly related to how much an owner can save yearly when reducing OA rated by 10 to 20%.

I am seldom involved in a project that does not have any intermittently occupied spacesOccupied Spaces are defined as enclosed spaces that can accommodate human activities. Occupied spaces are further classified as regularly occupied or non-regularly occupied spaces based on the duration of the occupancy, individual or multi-occupant based on the quantity of occupants, and densely or non-densely occupied spaces based upon the concentration of occupants in the space.. But even so, a space that isnt intermittently occupied should also be time averaged. Offices spaces for example can get close to 10% reduction in OA flow rates when time averaged.

Post a Reply
0
0
James Doyle Owner ConServe
Jul 30 2014
LEEDuser Member
96 Thumbs Up

IEQp1-A1 Statement "Would need over 100% OA Intake"

Our project credit data has to be completed by 8-5 and I am getting a message "Would need over 100% OA Intake" at the end of the end of the IEQp1-A1 VAVVariable Air Volume (VAV) is an HVAC conservation feature that supplies varying quantities of conditioned (heated or cooled) air to different parts of a building according to the heating and cooling needs of those specific areas. data input form. All values look good with the measured OA intake to the AHU1.Air-handling units (AHUs) are mechanical indirect heating, ventilating, or air-conditioning systems in which the air is treated or handled by equipment located outside the rooms served, usually at a central location, and conveyed to and from the rooms by a fan and a system of distributing ducts. (NEEB, 1997 edition) 2.A type of heating and/or cooling distribution equipment that channels warm or cool air to different parts of a building. This process of channeling the conditioned air often involves drawing air over heating or cooling coils and forcing it from a central location through ducts or air-handling units. Air-handling units are hidden in the walls or ceilings, where they use steam or hot water to heat, or chilled water to cool the air inside the ductwork. exceeding the required minimum amount. What does the over 100% OA statement mean? We are using the IEQp1 V4 form for our EBOMEBOM is an acronym for Existing Buildings: Operations & Maintenance, one of the LEED 2009 rating sytems. 2009 project.

Thanks for your help.

1
2
0
Noriko Yasuhara CSR Design & Landscape Co., Ltd. Aug 08 2014 LEEDuser Member 1743 Thumbs Up

Hi James,

Maybe you should post this on the EBOMEBOM is an acronym for Existing Buildings: Operations & Maintenance, one of the LEED 2009 rating sytems. forum. The message you are getting shows no compliance due to the lack of OA. Can't say more without more information. Good luck!

2
2
0
Andrew Mitchell, P.E. Mechanical Engineer / LEED Coordination Manager, Moses & Associates Aug 08 2014 LEEDuser Expert 2434 Thumbs Up

It means that the supply airflow to at least one zone is below the required OA rate to the zone.

Post a Reply
0
0
Nancy Henderson Managing Partner ArchEcology
Jun 19 2014
LEEDuser Member
632 Thumbs Up

Split System Heat Pumps with Heat Recovery Ventilators

We are working on a residential building that has common areas which are conditioned with split system heat pumps and heat recovery ventilators for fresh air. Normally I would consider this a single zone system, but the HRU's serve multiple zones and systems (there are 4 HRU's and 10 split system heat pumps). Fresh air is ducted to each zone from the HRU, but there is only one return grill. Would I still treat this as a single zone system - or do I have to go to the multi-zone?

1
1
0
Roger Chang Principal, Director of Sustainability, Westlake Reed Leskosky Jun 30 2014 LEEDuser Expert 3990 Thumbs Up

Nancy, you should treat this as a 100% outdoor air system, as long as a split system heat pumpA type of heating and/or cooling equipment that draws heat into a building from outside and, during the cooling season, ejects heat from the building to the outside. Heat pumps are vapor-compression refrigeration systems whose indoor/outdoor coils are used reversibly as condensers or evaporators, depending on the need for heating or cooling. In the 2003 CBECS, specific information was collected on whether the heat pump system was a packaged unit, residential-type split system, or individual room heat pump, and whether the heat pump was air source, ground source, or water source. does not serve more than one zone.

Post a Reply
0
0
SW LEE Project Manager
Jun 16 2014
LEEDuser Member
331 Thumbs Up

Multi zone or 100%OA ?

Our project is use VRF system to keep the space cool. We also provide dedicated injection fan (DOAS) as to meet 62.1 requirement. Most space will have indoor cassette unit. OA ventilation were provided from injection fan (DOAS) to each VRF system.
In IEQP1 form, we use VRP Compliance Calculate found in Appendix 1 for submission.

However,
Some spaces such as a small area of lift lobby or storage room (aka files room), we only cater OA (from the same DOAS) and not cooling.
Do this area consider as "mechanical ventilated 100% OA" ?

1
1
0
Andrew Mitchell, P.E. Mechanical Engineer / LEED Coordination Manager, Moses & Associates Jun 17 2014 LEEDuser Expert 2434 Thumbs Up

If you are supplying the space with OA from a DOAS then it is mechanically ventilated.

Post a Reply
0
0
Nena Elise
Jun 12 2014
LEEDuser Member
3424 Thumbs Up

Bathrooms and Storage rooms

According to the IEQ space matrix bathrooms and storage rooms are excluded from VRP calculations for IEQp1, would they still be excluded from 100% OA systems?

1
4
0
Andrew Mitchell, P.E. Mechanical Engineer / LEED Coordination Manager, Moses & Associates Jun 13 2014 LEEDuser Expert 2434 Thumbs Up

You will have to comply with either natural ventilation or required exhaust rates regardless of your system type.

2
4
0
Julia Weatherby Senior Mechanical Engineer, Lindgren & Sharples, P.C. Jun 13 2014 LEEDuser Member 1458 Thumbs Up

While what Andrew says is true, unoccupied storage rooms do not require outdoor air and may not require exhaust depending on whether chemicals, etc. are to be stored in the closet. Also in my experience, even though the exhaust is required in restrooms by ASHRAE 62.1-2007, you normally don't have to include any reference to restroom exhaust in your IEQp1 ventilation calculations.

The same spaces that are excluded from VRP calculation requirements are also excluded from 100% outdoor air system tabulations, yes.

3
4
0
Nena Elise Jun 13 2014 LEEDuser Member 3424 Thumbs Up

Julie, thank you for your clarifications! We will remove the storage and bathrooms from our 100%OA system tabulation.

4
4
0
Rudolph Carneiro HVAC consultant, Sustentech Aug 08 2014 Guest 582 Thumbs Up

Nena, dont forgot that exaust requirements in 62.1-2007 depend on wether it is or isnt an ocupiable space. Look up the definition of occupiable space in the 62.1 definitions section.

Post a Reply
0
0
Harsharan Kaur
Jun 11 2014
Guest
20 Thumbs Up

IEQ Prerequisite 1 – Minimum Indoor Air Quality Performance

We are working on a Project, in which most of the rooms are complying with the ASHRAE 62.1-2007 Natural Ventilation requirements, stated under the IEQ Prerequisite 1 – Minimum Indoor Air Quality Performance. And there are few rooms which are not qualifying as per the requirement. The Engineer is proposing Exhaust systems in the rooms which are not qualifying following the Natural Ventilation approach. This exhaust system will create a negative pressure in the Non-qualifying room, which will suck the air from the adjacent Qualifying rooms.

The queries are as follows:

1. Will installation of the exhaust system help to comply as per the requirement?
2. Can the openings at the bottom of the door be provided to help us qualify the credit?
3. Is there any requirement of CFM for the exhaust systems to comply with the LEED requirement? Do we need to consider the exhaust CFM as per Section 6 of ASHRAE 62.1-2007?

Thanks in advance!

1
1
0
Andrew Mitchell, P.E. Mechanical Engineer / LEED Coordination Manager, Moses & Associates Jun 11 2014 LEEDuser Expert 2434 Thumbs Up

1. No. Not if you are not ducting fresh air that will be used as make-up air.

2. Only if you can prove that the make-up air into that room is OA.

3. You would have to comply with the ventilation rate procedure with a ventilation effectiveness of 0.5.

Post a Reply
0
0
Harsharan Kaur
Jun 10 2014
Guest
20 Thumbs Up

EQ p1 -Minimum IAQ Performance (Natural Ventilation)

Hello,

We are working on a Project, in which most of the rooms are complying with the ASHRAE 62.1-2007 Natural Ventilation requirements, stated under the IEQ Prerequisite 1 – Minimum Indoor Air Quality Performance. And there are few rooms which are not qualifying as per the requirement. The Engineer is proposing Exhaust systems in the rooms which are not qualifying following the Natural Ventilation approach. This exhaust system will create a negative pressure in the Non-qualifying room, which will suck the air from the adjacent Qualifying rooms.

The queries are as follows:

1. Will installation of the exhaust system help to comply as per the requirement?
2. Can the openings at the bottom of the door be provided to help us qualify the credit?
3. Is there any requirement of CFM for the exhaust systems to comply with the LEED requirement? Do we need to consider the exhaust CFM as per Section 6 of ASHRAE 62.1-2007?

Thanking you in advance.

1
1
0
Roger Chang Principal, Director of Sustainability, Westlake Reed Leskosky Jun 30 2014 LEEDuser Expert 3990 Thumbs Up

You may utilize transfer air induced by exhaust fans to comply with ASHRAE 62.1-2007, but the following must be considered:
1) Air class - this is described in the standard. There are 4 classes, with 1 being the cleanest air and 4 being exhaust from contaminated sources, like fume hoods.
2) Ventilation effectiveness - when utilizing transfer air, there is a de-rating factor you need to account for, typically more than 50%.
3) The exhaust airflow rate is dictated within ASHRAE 62.1.

Note there is a limit to how much air can be transferred through an undercut door. This is typically limited to residential applications where air volumes are relatively small.

Post a Reply
0
0
Malek Abualhaj
Jun 10 2014
LEEDuser Member
14 Thumbs Up

Ductless air system

Hello,

I am working on a residential building, the venilation system consists of 4 AHUs that supply air to corridors. The corridors are pressurized and therefore push the fresh air through grills in the ceiling to the apartments. There is no ducting between the corridors and the apartments. Therefore the air transfers through the plenum basically. There is sufficient air flow, but would the system be approved by USGBC ?

1
2
0
Andrew Mitchell, P.E. Mechanical Engineer / LEED Coordination Manager, Moses & Associates Jun 10 2014 LEEDuser Expert 2434 Thumbs Up

I have worked on a similar design. The only way that I could be sure to get approval was to have an exhaust fan that draws the ventilation air into the living spaces. You have to use a ventilation effectiveness of 0.5. If you are simply counting on a pressurized corridor leaking ventilation air into each space at a uniform rate, it will probably not be approved by the LEED reviewer.

2
2
0
Malek Abualhaj Jun 10 2014 LEEDuser Member 14 Thumbs Up

Thanks Andrew for the reply. Originally, we submitted a CIRCredit Interpretation Ruling. Used by design team members experiencing difficulties in the application of a LEED prerequisite or credit to a project. Typically, difficulties arise when specific issues are not directly addressed by LEED information/guide with this system asking if it is going to be feasible, and the USGBC replied it would be approved. However, in our CIR we added that there will be transfer ducts between the corridor and the apartment, but the project cannot include those ducts due to the fire system in the building. We are trying to find a different approach to solve the issue. Natural ventilation did not work either (small windows).

Post a Reply
0
0
Catalina Caballero Sustainability Coordinator JALRW Eng. Group Inc.
Jun 06 2014
LEEDuser Member
2462 Thumbs Up

Multifamily compliance with Ashrae 62.1-2004 vs 2007

We have designed project that was built recently under local code compliance that refers to Ashrae 62.1-2007, however the project was registered for LEEDv2 a while ago, therefore we designed based on 2007 but according to the comments from USGBC we need to comply with the more strict 2004 version of Ashrae 62.1. Is there a CIRCredit Interpretation Ruling. Used by design team members experiencing difficulties in the application of a LEED prerequisite or credit to a project. Typically, difficulties arise when specific issues are not directly addressed by LEED information/guide that would allow compliance by meeting local ordinances?

1
2
0
Andrew Mitchell, P.E. Mechanical Engineer / LEED Coordination Manager, Moses & Associates Jun 06 2014 LEEDuser Expert 2434 Thumbs Up

Catalina, you are allowed to use local ordinances but only if they are more stringent than the ASHRAE standard cited in the requirements. What is the specific requirement that's more strict in the 2004 standard?

2
2
0
Catalina Caballero Sustainability Coordinator, JALRW Eng. Group Inc. Jul 15 2014 LEEDuser Member 2462 Thumbs Up

residential units are required to provide more outside air (per room) while ashrae 62.-2007 requires a general ventilation for the complete dwelling unit. The difference is only like 10 cfm for us but we have 72 units

Post a Reply
0
0
Omar Katanani
May 23 2014
LEEDuser Member
7932 Thumbs Up

Fresh air provided by transfer grill

Dear all,

I am consulting on a big project which has small electrical rooms (~30 sq.ft) in the mechanically ventilated parking basement. The Engineers are claiming that it's not practical to provide a fresh air duct to these rooms (too much ductwork that has to pass from one size of the parking all the way to the other side, just for several small rooms like this).

The Engineers are proposing having an exhaust fan in each of these small rooms, along with a Fresh Air Transfer Grill in the room, which will ensure that sufficient amount of fresh air enters the room. The parking is mechanically ventilated with 100% fresh air & exhaust fans.

Would this be acceptable for the prerequisite? Do we need additional calculations from the engineers regarding the amount of fresh air entering these small rooms?

Thanks!

1
8
0
Andrew Mitchell, P.E. Mechanical Engineer / LEED Coordination Manager, Moses & Associates May 23 2014 LEEDuser Expert 2434 Thumbs Up

Omar, since these are not considered to be occupiable spaces, they do not need ventilation. You can simply provide cooling as necessary for the equipment inside.

2
8
0
Omar Katanani May 23 2014 LEEDuser Member 7932 Thumbs Up

Thanks Andrew,

However ASHRAE 62,1-2007 Table 6-1 has an area outdoor air rate of 0.06 cfm/ft2

The way I understood this is that even if an electrical room isn't occupied (which is true in almost all cases), you still need to provide fresh air.

Isn't this the case?

3
8
0
Andrew Mitchell, P.E. Mechanical Engineer / LEED Coordination Manager, Moses & Associates May 23 2014 LEEDuser Expert 2434 Thumbs Up

No, this is not the case. See the definition of Occupiable Space in ASHRAE 62.1.

4
8
0
Omar Katanani May 23 2014 LEEDuser Member 7932 Thumbs Up

Andrew, I know that these electrical rooms do not qualify as occupiable space, but still, why does Table 6-1 include ventilation requirements for electrical rooms?

5
8
0
Andrew Mitchell, P.E. Mechanical Engineer / LEED Coordination Manager, Moses & Associates May 23 2014 LEEDuser Expert 2434 Thumbs Up

You have to understand that the 62.1 Standard is meant to be applied to your building according to actual occupancy and use. There are some electrical rooms in the world that are occupied. Your electrical rooms (according to your description) are not. Therefore, you should utilize the exception found in the definition of an Occupiable Space. I hope that helps.

6
8
0
Omar Katanani May 23 2014 LEEDuser Member 7932 Thumbs Up

Okay now it's clear, thanks Andrew :)

7
8
0
Richard Mathews Mechanical Engineer Jun 06 2014 Guest 75 Thumbs Up

To clarify things, the ventilation requirements for "Electrical equipment rooms" and "Elevator machine rooms" were stricken from ASHRAE 62.1-2007 with Addendum d. At the same time they modified the language for 'storage rooms' to list "Occupiable storage rooms for liquids or gels", along with a separate listing for "Occupiable storage rooms for dry materials", which have both been significantly helpful.

8
8
0
Omar Katanani Jun 06 2014 LEEDuser Member 7932 Thumbs Up

Good to know, thanks Richard!

Post a Reply
0
0
Valentin Grimaud Thermal Engineer TERAO Green Building Engineering
May 12 2014
LEEDuser Member
990 Thumbs Up

Separated phase

My project is in design mid-review period, the reviewer gave a comment on IEQp1 which could be simplied as: “The total project area that is provided outdoor air is 10000 square meters (7000m2 for Phase I and 3000m2 for Phase 2); however, the ventilation calculations provided in the form indicate a total area of only 7000m2. Please provide a supplemental narrative and/or revised ventilation calculations to verify that all occupiable spaces have been considered to meet the requirements of ASHRAE Standard 62.1-2007.”

The 3000m2 is part of building and reserved for phase 2 of project, this area is estimated by project owner and there is no detail design on this part, what should I do for the credit compliance? Do I need a project owner’s letter for clarifying these areas would be designed according to ASHRAE Standard 62.1-2007 in phase 2 ??

1
3
0
Andrew Mitchell, P.E. Mechanical Engineer / LEED Coordination Manager, Moses & Associates May 13 2014 LEEDuser Expert 2434 Thumbs Up

Make sure that the alternate space which is not being built is outside of your LEED boundary. If it is make reference to the boundary. If the area is not outside of the boundary then just highlight one of the sheets tat shows it as an alternate or future space and add a narrative about the fact that it is not going to be built. Either one of these methods should suffice.

More replies to "Separated phase " on next page...

Start a new LEED comment thread

Oct 01 2014
Type the characters you see in this picture. (verify using audio)
Type the characters you see in the picture above; if you can't read them, submit the form and a new image will be generated. Not case sensitive.

Copyright 2014 – BuildingGreen, Inc.